Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 239(1): 36-50, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37877586

RESUMO

Human enterocytes are primary targets of infection by invasive bacterium Salmonella Typhimurium, and studies using nonintestinal epithelial cells established that S. Typhimurium activates Rho family GTPases, primarily CDC42, to modulate the actin cytoskeletal network for invasion. The host intracellular protein network that engages CDC42 and influences the pathogen's invasive capacity are relatively unclear. Here, proteomic analyses of canonical and variant CDC42 interactomes identified a poorly characterized CDC42 interacting protein, CDC42EP1, whose intracellular localization is rapidly redistributed and aggregated around the invading bacteria. CDC42EP1 associates with SEPTIN-7 and Villin, and its relocalization and bacterial engagement depend on host CDC42 and S. Typhimurium's capability of activating CDC42. Unlike CDC42, CDC42EP1 is not required for S. Typhimurium's initial cellular entry but is found to associate with Salmonella-containing vacuoles after long-term infections, indicating a contribution to the pathogen's intracellular growth and replication. These results uncover a new host regulator of enteric Salmonella infections, which may be targeted to restrict bacterial load at the primary site of infection to prevent systemic spread.


Assuntos
Proteínas do Citoesqueleto , Salmonella typhimurium , Proteínas rho de Ligação ao GTP , Humanos , Actinas/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Citoesqueleto/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Salmonella typhimurium/patogenicidade , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo
2.
FEBS J ; 291(5): 1008-1026, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38037455

RESUMO

The scaffolding protein programmed cell death protein 10 (Pdcd10) has been demonstrated to play a critical role in renal epithelial cell homeostasis and function by maintaining appropriate water reabsorption in collecting ducts. Both ureter and kidney collecting duct systems are derived from the ureter bud during development. Here, we report that cadherin-16 (Cdh16)-cre drives gene recombination with high specificity in the ureter, but not the bladder, urothelium. The consequences of Pdcd10 deletion on the stratified ureter urothelium were investigated using an integrated approach including messenger RNA (mRNA) expression analysis, immunocytochemistry, and high-resolution confocal and electron microscopy. Loss of Pdcd10 in the ureter urothelium resulted in increased expression of uroplakins (Upks) and keratins (Krts), as well as hypertrophy of the ureter urothelium with an associated increase in the number of proliferation marker protein Ki-67 (Ki67)-expressing cells specifically within the basal urothelium layer. Ultrastructural analysis documented significant modification of the intracellular membrane system, including intracellular vesicle genesis and transport along the basal- to umbrella-cell-layer axis. Additionally, Pdcd10 loss resulted in swelling of Golgi compartments, disruption of mitochondrial cristae structure, and increased lysosomal fusion. Lack of Pdcd10 also resulted in decreased fusiform vesicle formation in umbrella cells, increased secretion of exosome vesicles, and alteration in microvillar structure on apical membranes. Our findings indicate that Pdcd10 expression and its influence on homeostasis is associated with modulation of endomembrane trafficking and organelle biogenesis in the ureter urothelium.


Assuntos
Ureter , Humanos , Urotélio , Mitocôndrias/genética , Complexo de Golgi , Hipertrofia
3.
EMBO J ; 42(21): e113975, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37718683

RESUMO

Paneth cells (PCs), a specialized secretory cell type in the small intestine, are increasingly recognized as having an essential role in host responses to microbiome and environmental stresses. Whether and how commensal and pathogenic microbes modify PC composition to modulate inflammation remain unclear. Using newly developed PC-reporter mice under conventional and gnotobiotic conditions, we determined PC transcriptomic heterogeneity in response to commensal and invasive microbes at single cell level. Infection expands the pool of CD74+ PCs, whose number correlates with auto or allogeneic inflammatory disease progressions in mice. Similar correlation was found in human inflammatory disease tissues. Infection-stimulated cytokines increase production of reactive oxygen species (ROS) and expression of a PC-specific mucosal pentraxin (Mptx2) in activated PCs. A PC-specific ablation of MyD88 reduced CD74+ PC population, thus ameliorating pathogen-induced systemic disease. A similar phenotype was also observed in mice lacking Mptx2. Thus, infection stimulates expansion of a PC subset that influences disease progression.


Assuntos
Microbiota , Celulas de Paneth , Humanos , Animais , Camundongos , Celulas de Paneth/metabolismo , Celulas de Paneth/patologia , Intestino Delgado , Inflamação/patologia , Citocinas/metabolismo
4.
EMBO Rep ; 24(9): e56240, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37424454

RESUMO

RAB11 small GTPases and associated recycling endosome have been localized to mitotic spindles and implicated in regulating mitosis. However, the physiological significance of such regulation has not been observed in mammalian tissues. We have used newly engineered mouse models to investigate intestinal epithelial renewal in the absence of single or double isoforms of RAB11 family members: Rab11a and Rab11b. Comparing with single knockouts, mice with compound ablation demonstrate a defective cell cycle entry and robust mitotic arrest followed by apoptosis, leading to a total penetrance of lethality within 3 days of gene ablation. Upon Rab11 deletion ex vivo, enteroids show abnormal mitotic spindle formation and cell death. Untargeted proteomic profiling of Rab11a and Rab11b immunoprecipitates has uncovered a shared interactome containing mitotic spindle microtubule regulators. Disrupting Rab11 alters kinesin motor KIF11 function and impairs bipolar spindle formation and cell division. These data demonstrate that RAB11A and RAB11B redundantly control mitotic spindle function and intestinal progenitor cell division, a mechanism that may be utilized to govern the homeostasis and renewal of other mammalian tissues.


Assuntos
Proteômica , Proteínas rab de Ligação ao GTP , Animais , Camundongos , Mamíferos/metabolismo , Mitose , Proteínas rab de Ligação ao GTP/metabolismo , Fuso Acromático/metabolismo , Células-Tronco/metabolismo
5.
Gastroenterology ; 162(3): 877-889.e7, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34861219

RESUMO

BACKGROUND & AIMS: Excessive shedding of apoptotic enterocytes into the intestinal lumen is observed in inflammatory bowel disease and is correlated with disease relapse. Based on their cytolytic capacity and surveillance behavior, we investigated whether intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IELs) are actively involved in the shedding of enterocytes into the lumen. METHODS: Intravital microscopy was performed on GFP γδ T cell reporter mice treated with intraperitoneal lipopolysaccharide (10 mg/kg) for 90 minutes to induce tumor necrosis factor-mediated apoptosis. Cell shedding in various knockout or transgenic mice in the presence or absence of blocking antibody was quantified by immunostaining for ZO-1 funnels and cleaved caspase-3 (CC3). Granzyme A and granzyme B release from ex vivo-stimulated γδ IELs was quantified by enzyme-linked immunosorbent assay. Immunostaining for γδ T cell receptor and CC3 was performed on duodenal and ileal biopsies from controls and patients with Crohn's disease. RESULTS: Intravital microscopy of lipopolysaccharide-treated mice revealed that γδ IELs make extended contact with shedding enterocytes. These prolonged interactions require CD103 engagement by E-cadherin, and CD103 knockout or blockade significantly reduced lipopolysaccharide-induced shedding. Furthermore, we found that granzymes A and B, but not perforin, are required for cell shedding. These extracellular granzymes are released by γδ IELs both constitutively and after CD103/E-cadherin ligation. Moreover, we found that the frequency of γδ IEL localization to CC3-positive enterocytes is increased in Crohn's disease biopsies compared with healthy controls. CONCLUSIONS: Our results uncover a previously unrecognized role for γδ IELs in facilitating tumor necrosis factor-mediated shedding of apoptotic enterocytes via CD103-mediated extracellular granzyme release.


Assuntos
Antígenos CD/metabolismo , Doença de Crohn/metabolismo , Enterócitos/fisiologia , Granzimas/metabolismo , Cadeias alfa de Integrinas/metabolismo , Linfócitos Intraepiteliais/fisiologia , Adolescente , Adulto , Animais , Antígenos CD/genética , Apoptose , Caderinas/metabolismo , Caspase 3/metabolismo , Doença de Crohn/patologia , Duodeno/patologia , Enterócitos/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Íleo/patologia , Cadeias alfa de Integrinas/genética , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Linfócitos Intraepiteliais/enzimologia , Linfócitos Intraepiteliais/patologia , Microscopia Intravital , Jejuno/imunologia , Jejuno/patologia , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
6.
Development ; 149(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34910127

RESUMO

Although Wnt signaling is clearly important for the intestinal epithelial homeostasis, the relevance of various sources of Wnt ligands themselves remains incompletely understood. Blocking the release of Wnt in distinct stromal cell types suggests obligatory functions of several stromal cell sources and yields different observations. The physiological contribution of epithelial Wnt to tissue homeostasis remains unclear. We show here that blocking epithelial Wnts affects colonic Reg4+ epithelial cell differentiation and impairs colonic epithelial regeneration after injury in mice. Single-cell RNA analysis of intestinal stroma showed that the majority of Wnt-producing cells were contained in transgelin (Tagln+) and smooth muscle actin α2 (Acta2+) expressing populations. We genetically attenuated Wnt production from these stromal cells using Tagln-Cre and Acta2-CreER drivers, and found that blockage of Wnt release from either epithelium or Tagln+ and Acta2+ stromal cells impaired colonic epithelial healing after chemical-induced injury. Aggregated blockage of Wnt release from both epithelium and Tagln+ or Acta2+ stromal cells drastically diminished epithelial repair, increasing morbidity and mortality. These results from two uncharacterized stromal populations suggested that colonic recovery from colitis-like injury depends on multiple Wnt-producing sources.


Assuntos
Actinas/metabolismo , Colite Ulcerativa/metabolismo , Mucosa Intestinal/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Proteína Wnt3A/metabolismo , Cicatrização , Actinas/genética , Animais , Células Cultivadas , Colo/citologia , Colo/metabolismo , Colo/fisiologia , Mucosa Intestinal/citologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas Musculares/genética , Proteínas Associadas a Pancreatite/genética , Proteínas Associadas a Pancreatite/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/metabolismo , Proteína Wnt3A/genética
7.
mBio ; 12(4): e0134221, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34311584

RESUMO

Peptidoglycan (PG) is a highly cross-linked peptide-glycan mesh that confers structural rigidity and shape to most bacterial cells. Polymerization of new PG is usually achieved by the concerted activity of two membrane-bound machineries, class-A penicillin binding proteins (aPBPs) and class-B penicillin binding proteins (bPBPs) in complex with shape, elongation, division, and sporulation (SEDS) proteins. Here, we have identified four phylogenetically distinct groups of bacteria that lack any identifiable aPBPs. We performed experiments on a panel of species within one of these groups, the Rickettsiales, and found that bacteria lacking aPBPs build a PG-like cell wall with minimal abundance and rigidity relative to cell walls of aPBP-containing bacteria. This reduced cell wall may have evolved to minimize the activation of host responses to pathogens and endosymbionts while retaining the minimal PG-biosynthesis machinery required for cell elongation and division. We term these "peptidoglycan-intermediate" bacteria, a cohort of host-associated species that includes some human pathogens. IMPORTANCE Peptidoglycan (PG) is a large, cross-linked polymer that forms the cell wall of most bacterial species and confers shape, rigidity, and protection from osmotic shock. It is also a potent stimulator of the immune response in animals. PG is normally polymerized by two groups of enzymes, aPBPs and bPBPs working together with shape, elongation, division, and sporulation (SEDS) proteins. We have identified a diverse set of host-associated bacteria that have selectively lost aPBP genes while retaining bPBP/SEDS and show that some of these build a minimal PG-like structure. It is expected that these minimal cell walls built in the absence of aPBPs improve the evolutionary fitness of host-associated bacteria, potentially through evasion of PG-recognition by the host immune system.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/metabolismo , Rickettsiaceae/enzimologia , Rickettsiaceae/metabolismo , Proteínas de Bactérias/genética , Vias Biossintéticas , Divisão Celular , Humanos , Proteínas de Ligação às Penicilinas/classificação , Proteínas de Ligação às Penicilinas/genética , Rickettsiaceae/classificação , Rickettsiaceae/genética
8.
J Biol Chem ; 297(1): 100848, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34058200

RESUMO

Within the intestinal epithelium, regulation of intracellular protein and vesicular trafficking is of utmost importance for barrier maintenance, immune responses, and tissue polarity. RAB11A is a small GTPase that mediates the anterograde transport of protein cargos to the plasma membrane. Loss of RAB11A-dependent trafficking in mature intestinal epithelial cells results in increased epithelial proliferation and nuclear accumulation of Yes-associated protein (YAP), a key Hippo-signaling transducer that senses cell-cell contacts and regulates tissue growth. However, it is unclear how RAB11A regulates YAP intracellular localizations. In this report, we examined the relationship of RAB11A to epithelial junctional complexes, YAP, and the associated consequences on colonic epithelial tissue repair. We found that RAB11A controls the biochemical associations of YAP with multiple components of adherens and tight junctions, including α-catenin, ß-catenin, and Merlin, a tumor suppressor. In the absence of RAB11A and Merlin, we observed enhanced YAP-ß-catenin complex formation and nuclear translocation. Upon chemical injury to the intestine, mice deficient in RAB11A were found to have reduced epithelial integrity, decreased YAP localization to adherens and tight junctions, and increased nuclear YAP accumulation in the colon epithelium. Thus, RAB11A-regulated trafficking regulates the Hippo-YAP signaling pathway for rapid reparative response after tissue injury.


Assuntos
Proteínas de Ciclo Celular/genética , Colite/genética , Neurofibromina 2/genética , Fatores de Transcrição/genética , beta Catenina/genética , Proteínas rab de Ligação ao GTP/genética , Junções Aderentes/genética , Animais , Células CACO-2 , Proliferação de Células/genética , Colite/induzido quimicamente , Colite/patologia , Colo/crescimento & desenvolvimento , Colo/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Epitélio/crescimento & desenvolvimento , Epitélio/patologia , Humanos , Camundongos , Junções Íntimas/genética , alfa Catenina/genética
9.
Nat Commun ; 12(1): 2886, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001900

RESUMO

The brush border is comprised of microvilli surface protrusions on the apical surface of epithelia. This specialized structure greatly increases absorptive surface area and plays crucial roles in human health. However, transcriptional regulatory networks controlling brush border genes are not fully understood. Here, we identify that hepatocyte nuclear factor 4 (HNF4) transcription factor is a conserved and important regulator of brush border gene program in multiple organs, such as intestine, kidney and yolk sac. Compromised brush border gene signatures and impaired transport were observed in these tissues upon HNF4 loss. By ChIP-seq, we find HNF4 binds and activates brush border genes in the intestine and kidney. H3K4me3 HiChIP-seq identifies that HNF4 loss results in impaired chromatin looping between enhancers and promoters at gene loci of brush border genes, and instead enhanced chromatin looping at gene loci of stress fiber genes in the intestine. This study provides comprehensive transcriptional regulatory mechanisms and a functional demonstration of a critical role for HNF4 in brush border gene regulation across multiple murine epithelial tissues.


Assuntos
Regulação da Expressão Gênica , Fator 4 Nuclear de Hepatócito/genética , Mucosa Intestinal/metabolismo , Rim/metabolismo , Microvilosidades/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Saco Vitelino/metabolismo , Animais , Epitélio/metabolismo , Perfilação da Expressão Gênica/métodos , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Intestinos/ultraestrutura , Rim/ultraestrutura , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Receptores Citoplasmáticos e Nucleares/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
J Biol Chem ; 296: 100488, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33662399

RESUMO

Differentiation of mesenchymal stem cells into adipocyte requires coordination of external stimuli and depends upon the functionality of the primary cilium. The Rab8 small GTPases are regulators of intracellular transport of membrane-bound structural and signaling cargo. However, the physiological contribution of the intrinsic trafficking network controlled by Rab8 to mesenchymal tissue differentiation has not been fully defined in vivo and in primary tissue cultures. Here, we show that mouse embryonic fibroblasts (MEFs) lacking Rab8 have severely impaired adipocyte differentiation in vivo and ex vivo. Immunofluorescent localization and biochemical analyses of Rab8a-deficient, Rab8b-deficient, and Rab8a and Rab8b double-deficient MEFs revealed that Rab8 controls the Lrp6 vesicular compartment, clearance of basal signalosome, traffic of frizzled two receptor, and thereby a proper attenuation of Wnt signaling in differentiating MEFs. Upon induction of adipogenesis program, Rab8a- and Rab8b-deficient MEFs exhibited severely defective lipid-droplet formation and abnormal cilia morphology, despite overall intact cilia growth and ciliary cargo transport. Our results suggest that intracellular Rab8 traffic regulates induction of adipogenesis via proper positioning of Wnt receptors for signaling control in mesenchymal cells.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Via de Sinalização Wnt , Proteínas rab de Ligação ao GTP/metabolismo , Adipogenia/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Cílios/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Proteínas rab de Ligação ao GTP/genética
11.
Cell Rep ; 34(4): 108679, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33503426

RESUMO

Cells in renewing tissues exhibit dramatic transcriptional changes as they differentiate. The contribution of chromatin looping to tissue renewal is incompletely understood. Enhancer-promoter interactions could be relatively stable as cells transition from progenitor to differentiated states; alternatively, chromatin looping could be as dynamic as the gene expression from their loci. The intestinal epithelium is the most rapidly renewing mammalian tissue. Proliferative cells in crypts of Lieberkühn sustain a stream of differentiated cells that are continually shed into the lumen. We apply chromosome conformation capture combined with chromatin immunoprecipitation (HiChIP) and sequencing to measure enhancer-promoter interactions in progenitor and differentiated cells of the intestinal epithelium. Despite dynamic gene regulation across the differentiation axis, we find that enhancer-promoter interactions are relatively stable. Functionally, we find HNF4 transcription factors are required for chromatin looping at target genes. Depletion of HNF4 disrupts local chromatin looping, histone modifications, and target gene expression. This study provides insights into transcriptional regulatory mechanisms governing homeostasis in renewing tissues.


Assuntos
Fator 4 Nuclear de Hepatócito/genética , Mucosa Intestinal/fisiologia , Regiões Promotoras Genéticas/genética , Diferenciação Celular/genética , Cromatina/genética , Elementos Facilitadores Genéticos , Humanos , Mucosa Intestinal/citologia
12.
Immunity ; 53(2): 398-416.e8, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32814028

RESUMO

Paneth cells are the primary source of C-type lysozyme, a ß-1,4-N-acetylmuramoylhydrolase that enzymatically processes bacterial cell walls. Paneth cells are normally present in human cecum and ascending colon, but are rarely found in descending colon and rectum; Paneth cell metaplasia in this region and aberrant lysozyme production are hallmarks of inflammatory bowel disease (IBD) pathology. Here, we examined the impact of aberrant lysozyme production in colonic inflammation. Targeted disruption of Paneth cell lysozyme (Lyz1) protected mice from experimental colitis. Lyz1-deficiency diminished intestinal immune responses to bacterial molecular patterns and resulted in the expansion of lysozyme-sensitive mucolytic bacteria, including Ruminococcus gnavus, a Crohn's disease-associated pathobiont. Ectopic lysozyme production in colonic epithelium suppressed lysozyme-sensitive bacteria and exacerbated colitis. Transfer of R. gnavus into Lyz1-/- hosts elicited a type 2 immune response, causing epithelial reprograming and enhanced anti-colitogenic capacity. In contrast, in lysozyme-intact hosts, processed R. gnavus drove pro-inflammatory responses. Thus, Paneth cell lysozyme balances intestinal anti- and pro-inflammatory responses, with implications for IBD.


Assuntos
Clostridiales/imunologia , Colite Ulcerativa/patologia , Muramidase/genética , Muramidase/metabolismo , Celulas de Paneth/metabolismo , Animais , Clostridiales/genética , Colite Ulcerativa/microbiologia , Doença de Crohn/patologia , Feminino , Microbioma Gastrointestinal/genética , Células Caliciformes/citologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT6/genética
13.
JCI Insight ; 5(16)2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686657

RESUMO

The regulatory mechanisms enabling the intestinal epithelium to maintain a high degree of regenerative capacity during mucosal injury remain unclear. Ex vivo survival and clonogenicity of intestinal stem cells (ISCs) strictly required growth response mediated by cell division control 42 (Cdc42) and Cdc42-deficient enteroids to undergo rapid apoptosis. Mechanistically, Cdc42 engaging with EGFR was required for EGF-stimulated, receptor-mediated endocytosis and sufficient to promote MAPK signaling. Proteomics and kinase analysis revealed that a physiologically, but nonconventionally, spliced Cdc42 variant 2 (V2) exhibited stronger MAPK-activating capability. Human CDC42-V2 is transcriptionally elevated in some colon tumor tissues. Accordingly, mice engineered to overexpress Cdc42-V2 in intestinal epithelium showed elevated MAPK signaling, enhanced regeneration, and reduced mucosal damage in response to irradiation. Overproducing Cdc42-V2 specifically in mouse ISCs enhanced intestinal regeneration following injury. Thus, the intrinsic Cdc42-MAPK program is required for intestinal epithelial regeneration, and elevating this signaling cascade is capable of initiating protection from genotoxic injury.


Assuntos
Receptores ErbB/metabolismo , Mucosa Intestinal/fisiologia , Regeneração/fisiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Processamento Alternativo , Animais , Sobrevivência Celular , Endocitose/fisiologia , Células HEK293 , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos da radiação , Sistema de Sinalização das MAP Quinases , Camundongos Knockout , Camundongos Transgênicos , Proteína cdc42 de Ligação ao GTP/genética
14.
Gastroenterology ; 158(4): 985-999.e9, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31759926

RESUMO

BACKGROUND & AIMS: Functions of intestinal stem cells (ISCs) are regulated by diet and metabolic pathways. Hepatocyte nuclear factor 4 (HNF4) family are transcription factors that bind fatty acids. We investigated how HNF4 transcription factors regulate metabolism and their functions in ISCs in mice. METHODS: We performed studies with Villin-CreERT2;Lgr5-EGFP-IRES-CreERT2;Hnf4αf/f;Hnf4γCrispr/Crispr mice, hereafter referred to Hnf4αγDKO. Mice were given tamoxifen to induce Cre recombinase. Mice transgenic with only Cre alleles (Villin-CreERT2, Lgr5-EGFP-IRES-CreERT2, Hnf4α+/+, and Hnf4γ+/+) or mice given vehicle were used as controls. Crypt and villus cells were isolated, incubated with fluorescently labeled fatty acids or glucose analog, and analyzed by confocal microscopy. Fatty acid oxidation activity and tricarboxylic acid (TCA) cycle metabolites were measured in cells collected from the proximal half of the small intestine of Hnf4αγDKO and control mice. We performed chromatin immunoprecipitation and gene expression profiling analyses to identify genes regulated by HNF4 factors. We established organoids from duodenal crypts, incubated them with labeled palmitate or acetate, and measured production of TCA cycle metabolites or fatty acids. Acetate, a precursor of acetyl coenzyme A (CoA) (a product of fatty acid ß-oxidation [FAO]), or dichloroacetate, a compound that promotes pyruvate oxidation and generation of mitochondrial acetyl-CoA, were used for metabolic intervention. RESULTS: Crypt cells rapidly absorbed labeled fatty acids, and messenger RNA levels of Lgr5+ stem cell markers (Lgr5, Olfm4, Smoc2, Msi1, and Ascl2) were down-regulated in organoids incubated with etomoxir, an inhibitor of FAO, indicating that FAO was required for renewal of ISCs. HNF4A and HNF4G were expressed in ISCs and throughout the intestinal epithelium. Single knockout of either HNF4A or HNF4G did not affect maintenance of ISCs, but double-knockout of HNF4A and HNF4G resulted in ISC loss; stem cells failed to renew. FAO supports ISC renewal, and HNF4 transcription factors directly activate FAO genes, including Acsl5 and Acsf2 (encode regulators of acyl-CoA synthesis), Slc27a2 (encodes a fatty acid transporter), Fabp2 (encodes fatty acid binding protein), and Hadh (encodes hydroxyacyl-CoA dehydrogenase). In the intestinal epithelium of Hnf4αγDKO mice, expression levels of FAO genes, FAO activity, and metabolites of TCA cycle were all significantly decreased, but fatty acid synthesis transcripts were increased, compared with control mice. The contribution of labeled palmitate or acetate to the TCA cycle was reduced in organoids derived from Hnf4αγDKO mice, compared with control mice. Incubation of organoids derived from double-knockout mice with acetate or dichloroacetate restored stem cells. CONCLUSIONS: In mice, the transcription factors HNF4A and HNF4G regulate the expression of genes required for FAO and are required for renewal of ISCs.


Assuntos
Ácidos Graxos/metabolismo , Fator 4 Nuclear de Hepatócito/fisiologia , Intestino Delgado/citologia , Células-Tronco/metabolismo , Animais , Duodeno/citologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Mucosa Intestinal/citologia , Camundongos , Camundongos Knockout , Organoides/metabolismo , Oxirredução
15.
Cancer Res ; 79(16): 4099-4112, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31239271

RESUMO

The effects of polarized membrane trafficking in mature epithelial tissue on cell growth and cancer progression have not been fully explored in vivo. A majority of colorectal cancers have reduced and mislocalized Rab11, a small GTPase dedicated to trafficking of recycling endosomes. Patients with low Rab11 protein expression have poor survival rates. Using genetic models across species, we show that intact recycling endosome function restrains aberrant epithelial growth elicited by APC or RAS mutations. Loss of Rab11 protein led to epithelial dysplasia in early animal development and synergized with oncogenic pathways to accelerate tumor progression initiated by carcinogen, genetic mutation, or aging. Transcriptomic analysis uncovered an immediate expansion of the intestinal stem cell pool along with cell-autonomous Yki/Yap activation following disruption of Rab11a-mediated recycling endosomes. Intestinal tumors lacking Rab11a traffic exhibited marked elevation of nuclear Yap, upd3/IL6-Stat3, and amphiregulin-MAPK signaling, whereas suppression of Yki/Yap or upd3/IL6 reduced gut epithelial dysplasia and hyperplasia. Examination of Rab11a function in enteroids or cultured cell lines suggested that this endosome unit is required for suppression of the Yap pathway by Hippo kinases. Thus, recycling endosomes in mature epithelia constitute key tumor suppressors, loss of which accelerates carcinogenesis. SIGNIFICANCE: Recycling endosome traffic in mature epithelia constitutes a novel tumor suppressing mechanism.


Assuntos
Neoplasias Colorretais/metabolismo , Endossomos/metabolismo , Células Epiteliais/patologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Animais Geneticamente Modificados , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Células Epiteliais/metabolismo , Via de Sinalização Hippo , Humanos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/metabolismo , Células-Tronco/patologia , Proteínas rab de Ligação ao GTP/genética
16.
Autophagy ; 15(1): 151-164, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30145926

RESUMO

The mechanistic target of rapamycin kinase complex 1 (MTORC1) is a central cellular kinase that integrates major signaling pathways, allowing for regulation of anabolic and catabolic processes including macroautophagy/autophagy and lysosomal biogenesis. Essential to these processes is the regulatory activity of TFEB (transcription factor EB). In a regulatory feedback loop modulating transcriptional levels of RRAG/Rag GTPases, TFEB controls MTORC1 tethering to membranes and induction of anabolic processes upon nutrient replenishment. We now show that TFEB promotes expression of endocytic genes and increases rates of cellular endocytosis during homeostatic baseline and starvation conditions. TFEB-mediated endocytosis drives assembly of the MTORC1-containing nutrient sensing complex through the formation of endosomes that carry the associated proteins RRAGD, the amino acid transporter SLC38A9, and activate AKT/protein kinase B (AKT p-T308). TFEB-induced signaling endosomes en route to lysosomes are induced by amino acid starvation and are required to dissociate TSC2, re-tether and activate MTORC1 on endolysosomal membranes. This study characterizes TFEB-mediated endocytosis as a critical process leading to activation of MTORC1 and autophagic function, thus identifying the importance of the dynamic endolysosomal system in cellular clearance. Abbreviations: CAD: central adrenergic tyrosine hydroxylase-expressing-a-differentiated; ChIP-seq: chromosome immunoprecipitation sequencing; DAPI: 4',6-diamidino-2-phenylindole; DMSO: dimethyl sulfoxide; EDTA: ethylenediaminetetraacetic acid; EEA1: early endosomal antigen 1; EGF: epidermal growth factor; FBS: fetal bovine serum; GFP: green fluorescent protein; GTPase: guanosine triphosphatase; HEK293T: human embryonic kidney 293 cells expressing a temperature-sensitive mutant of the SV40 large T antigen; LAMP: lysosomal-associated membrane protein; LYNUS: lysosomal nutrient-sensing complex; MAP1LC3/LC3: microtubule associated protein 1 light chain 3 alpha/beta; MTOR: mechanistic target of rapamycin kinase; MTORC: mechanistic target of rapamycin kinase complex; OE: overexpression; PH: pleckstrin homology; PtdIns(3,4,5)P3: phosphatidylinositol 3,4,5-trisphosphate; RRAGD: Ras related GTPase binding D; RHEB: Ras homolog enriched in brain; SLC38A9: solute carrier family 38 member 9; SQSTM1: sequestosome 1; TFEB: transcription factor EB; TSC2: tuberous sclerosis 2; TMR: tetramethylrhodamine; ULK1: unc-51 like kinase 1; WT: wild type.


Assuntos
Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Endocitose/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Restrição Calórica , Endocitose/fisiologia , Células HEK293 , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Transdução de Sinais/genética
19.
Cell Stem Cell ; 23(1): 46-59.e5, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29887318

RESUMO

Paneth cells are post-mitotic intestinal epithelial cells supporting the stem cell niche and mucosal immunity. Paneth cell pathologies are observed in various gastrointestinal diseases, but their plasticity and response to genomic and environmental challenges remain unclear. Using a knockin allele engineered at the mouse Lyz1 locus, we performed detailed Paneth cell-lineage tracing. Irradiation induced a subset of Paneth cells to proliferate and differentiate into villus epithelial cells. RNA sequencing (RNA-seq) revealed that Paneth cells sorted from irradiated mice acquired a stem cell-like transcriptome; when cultured in vitro, these individual Paneth cells formed organoids. Irradiation activated Notch signaling, and forced expression of Notch intracellular domain (NICD) in Paneth cells, but not Wnt/ß-catenin pathway activation, induced their dedifferentiation. This study documents Paneth cell plasticity, particularly their ability to participate in epithelial replenishment following stem cell loss, adding to a growing body of knowledge detailing the molecular pathways controlling injury-induced regeneration.


Assuntos
Celulas de Paneth/patologia , Receptores Notch/metabolismo , Adenoma/tratamento farmacológico , Adenoma/patologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Injeções Intraperitoneais , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Celulas de Paneth/efeitos dos fármacos , Receptores Notch/antagonistas & inibidores , Tamoxifeno/administração & dosagem , Tamoxifeno/farmacologia
20.
Dev Biol ; 439(2): 92-101, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29684311

RESUMO

During development, the embryo transitions from a metabolism favoring glycolysis to a metabolism favoring mitochondrial respiration. How metabolic shifts regulate developmental processes, or how developmental processes regulate metabolic shifts, remains unclear. To test the requirement of mitochondrial function in developing endoderm-derived tissues, we genetically inactivated the mitochondrial transcription factor, Tfam, using the Shh-Cre driver. Tfam mutants did not survive postnatally, exhibiting defects in lung development. In the developing intestine, TFAM-loss was tolerated until late fetal development, during which the process of villus elongation was compromised. While progenitor cell populations appeared unperturbed, markers of enterocyte maturation were diminished and villi were blunted. Loss of TFAM was also tested in the adult intestinal epithelium, where enterocyte maturation was similarly dependent upon the mitochondrial transcription factor. While progenitor cells in the transit amplifying zone of the adult intestine remained proliferative, intestinal stem cell renewal was dependent upon TFAM, as indicated by molecular profiling and intestinal organoid formation assays. Taken together, these studies point to critical roles for the mitochondrial regulator TFAM for multiple aspects of intestinal development and maturation, and highlight the importance of mitochondrial regulators in tissue development and homeostasis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Grupo de Alta Mobilidade/fisiologia , Mucosa Intestinal/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Autorrenovação Celular/fisiologia , Proteínas de Ligação a DNA/genética , Feto/metabolismo , Regulação da Expressão Gênica/genética , Glicólise/genética , Glicólise/fisiologia , Proteínas de Grupo de Alta Mobilidade/genética , Mucosa Intestinal/embriologia , Mucosa Intestinal/crescimento & desenvolvimento , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Organogênese/genética , Organogênese/fisiologia , Organoides/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...