Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunity ; 56(7): 1649-1663.e5, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37236188

RESUMO

Allogeneic hematopoietic stem cell transplantation (alloHSCT) from donors lacking C-C chemokine receptor 5 (CCR5Δ32/Δ32) can cure HIV, yet mechanisms remain speculative. To define how alloHSCT mediates HIV cure, we performed MHC-matched alloHSCT in SIV+, anti-retroviral therapy (ART)-suppressed Mauritian cynomolgus macaques (MCMs) and demonstrated that allogeneic immunity was the major driver of reservoir clearance, occurring first in peripheral blood, then peripheral lymph nodes, and finally in mesenteric lymph nodes draining the gastrointestinal tract. While allogeneic immunity could extirpate the latent viral reservoir and did so in two alloHSCT-recipient MCMs that remained aviremic >2.5 years after stopping ART, in other cases, it was insufficient without protection of engrafting cells afforded by CCR5-deficiency, as CCR5-tropic virus spread to donor CD4+ T cells despite full ART suppression. These data demonstrate the individual contributions of allogeneic immunity and CCR5 deficiency to HIV cure and support defining targets of alloimmunity for curative strategies independent of HSCT.


Assuntos
Infecções por HIV , Transplante de Células-Tronco Hematopoéticas , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Macaca fascicularis , Carga Viral
3.
PLoS Pathog ; 19(3): e1011290, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36989320

RESUMO

HIV-associated neurocognitive disorders (HAND) affect ~40% of virally suppressed people with HIV (PWH), however, the precise viral dependent and independent changes to the brain are unclear. Here we characterized the CNS reservoir and immune environment of SIV-infected (SIV+) rhesus macaques during acute (n = 4), chronic (n = 12) or ART-suppressed SIV infection (n = 11). Multiplex immunofluorescence for markers of SIV infection (vRNA/vDNA) and immune activation was performed on frontal cortex and matched colon tissue. SIV+ animals contained detectable viral DNA+ cells that were not reduced in the frontal cortex or the gut by ART, supporting the presence of a stable viral reservoir in these compartments. SIV+ animals had impaired blood brain barrier (BBB) integrity and heightened levels of astrocytes or myeloid cells expressing antiviral, anti-inflammatory or oxidative stress markers which were not abrogated by ART. Neuroinflammation and BBB dysfunction correlated with measures of viremia and immune activation in the gut. Furthermore, SIV-uninfected animals with experimentally induced gut damage and colitis showed a similar immune activation profile in the frontal cortex to those of SIV-infected animals, supporting the role of chronic gut damage as an independent source of neuroinflammation. Together, these findings implicate gut-associated immune activation/damage as a significant contributor to neuroinflammation in ART-suppressed HIV/SIV infection which may drive HAND pathogenesis.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Macaca mulatta , Doenças Neuroinflamatórias
4.
PLoS Pathog ; 18(4): e1009990, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35395058

RESUMO

Syrian golden hamsters exhibit features of severe disease after SARS-CoV-2 WA1/2020 challenge and are therefore useful models of COVID-19 pathogenesis and prevention with vaccines. Recent studies have shown that SARS-CoV-2 infection stimulates type I interferon, myeloid, and inflammatory signatures similar to human disease and that weight loss can be prevented with vaccines. However, the impact of vaccination on transcriptional programs associated with COVID-19 pathogenesis and protective adaptive immune responses is unknown. Here we show that SARS-CoV-2 WA1/2020 challenge in hamsters stimulates myeloid and inflammatory programs as well as signatures of complement and thrombosis associated with human COVID-19. Notably, immunization with Ad26.COV2.S, an adenovirus serotype 26 vector (Ad26)-based vaccine expressing a stabilized SARS-CoV-2 spike protein, prevents the upregulation of these pathways, such that the mRNA expression profiles of vaccinated hamsters are comparable to uninfected animals. Using proteomics profiling, we validated these findings in rhesus macaques challenged with SARS-CoV-2 WA1/2020 or SARS-CoV-2 B.1.351. Finally, we show that Ad26.COV2.S vaccination induces T and B cell signatures that correlate with binding and neutralizing antibody responses weeks following vaccination. These data provide insights into the molecular mechanisms of Ad26.COV2.S protection against severe COVID-19 in animal models.


Assuntos
COVID-19 , Trombose , Ad26COVS1 , Animais , Anticorpos Neutralizantes , Vacinas contra COVID-19 , Cricetinae , Humanos , Inflamação , Macaca mulatta , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Regulação para Cima
5.
PLoS Pathog ; 17(5): e1009565, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33970966

RESUMO

Here, we assessed the efficacy of a short-course multimodal therapy (enrofloxacin, azithromycin, fenbendazole, and paromomycin) to eliminate common macaque endemic pathogens (EPs) and evaluated its impact on gastrointestinal (GI) microbiota, mucosal integrity, and local and systemic inflammation in sixteen clinically healthy macaques. Treatment combined with expanded practices resulted in successful maintenance of rhesus macaques (RM) free of common EPs, with no evidence of overt microbiota diversity loss or dysbiosis and instead resulted in a more defined luminal microbiota across study subjects. Creation of a GI pathogen free (GPF) status resulted in improved colonic mucosal barrier function (histologically, reduced colonic MPO+, and reduced pan-bacterial 16s rRNA in the MLN), reduced local and systemic innate and adaptive inflammation with reduction of colonic Mx1 and pSTAT1, decreased intermediate (CD14+CD16+) and non-classical monocytes (CD14-CD16+), reduced populations of peripheral dendritic cells, Ki-67+ and CD38+ CD4+ T cells, Ki-67+IgG+, and Ki-67+IgD+ B cells indicating lower levels of background inflammation in the distal descending colon, draining mesenteric lymph nodes, and systemically in peripheral blood, spleen, and axillary lymph nodes. A more controlled rate of viral acquisition resulted when untreated and treated macaques were challenged by low dose intrarectal SIVmac239x, with an ~100 fold increase in dose required to infect 50% (AID50) of the animals receiving treatment compared to untreated controls. Reduction in and increased consistency of number of transmitted founder variants resulting from challenge seen in the proof of concept study directly correlated with post-treatment GPF animal's improved barrier function and reduction of key target cell populations (Ki-67+ CD4+T cells) at the site of viral acquisition in the follow up study. These data demonstrate that a therapeutic and operational strategy can successfully eliminate varying background levels of EPs and their associated aberrant immunomodulatory effects within a captive macaque cohort, leading to a more consistent, better defined and reproducible research model.


Assuntos
Inflamação/terapia , Microbiota/efeitos dos fármacos , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Vírus da Imunodeficiência Símia/imunologia , Imunidade Adaptativa , Animais , Linfócitos B , Linfócitos T CD4-Positivos , Proliferação de Células , Terapia Combinada , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Humanos , Imunidade Inata , Mucosa Intestinal , Linfonodos , Macaca mulatta , Masculino , Monócitos , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia
6.
Cell ; 183(5): 1354-1366.e13, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33065030

RESUMO

The COVID-19 pandemic has led to extensive morbidity and mortality throughout the world. Clinical features that drive SARS-CoV-2 pathogenesis in humans include inflammation and thrombosis, but the mechanistic details underlying these processes remain to be determined. In this study, we demonstrate endothelial disruption and vascular thrombosis in histopathologic sections of lungs from both humans and rhesus macaques infected with SARS-CoV-2. To define key molecular pathways associated with SARS-CoV-2 pathogenesis in macaques, we performed transcriptomic analyses of bronchoalveolar lavage and peripheral blood and proteomic analyses of serum. We observed macrophage infiltrates in lung and upregulation of macrophage, complement, platelet activation, thrombosis, and proinflammatory markers, including C-reactive protein, MX1, IL-6, IL-1, IL-8, TNFα, and NF-κB. These results suggest a model in which critical interactions between inflammatory and thrombosis pathways lead to SARS-CoV-2-induced vascular disease. Our findings suggest potential therapeutic targets for COVID-19.


Assuntos
COVID-19/complicações , COVID-19/imunologia , SARS-CoV-2/genética , Trombose/complicações , Doenças Vasculares/complicações , Idoso de 80 Anos ou mais , Animais , Lavagem Broncoalveolar , Proteína C-Reativa/análise , COVID-19/sangue , COVID-19/patologia , Ativação do Complemento , Citocinas/sangue , Feminino , Humanos , Inflamação/sangue , Inflamação/imunologia , Inflamação/virologia , Pulmão/patologia , Macaca mulatta , Macrófagos/imunologia , Masculino , Ativação Plaquetária , Trombose/sangue , Trombose/patologia , Transcriptoma , Doenças Vasculares/sangue , Doenças Vasculares/patologia
7.
Nat Med ; 26(11): 1694-1700, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32884153

RESUMO

Coronavirus disease 2019 (COVID-19) in humans is often a clinically mild illness, but some individuals develop severe pneumonia, respiratory failure and death1-4. Studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in hamsters5-7 and nonhuman primates8-10 have generally reported mild clinical disease, and preclinical SARS-CoV-2 vaccine studies have demonstrated reduction of viral replication in the upper and lower respiratory tracts in nonhuman primates11-13. Here we show that high-dose intranasal SARS-CoV-2 infection in hamsters results in severe clinical disease, including high levels of virus replication in tissues, extensive pneumonia, weight loss and mortality in a subset of animals. A single immunization with an adenovirus serotype 26 vector-based vaccine expressing a stabilized SARS-CoV-2 spike protein elicited binding and neutralizing antibody responses and protected against SARS-CoV-2-induced weight loss, pneumonia and mortality. These data demonstrate vaccine protection against SARS-CoV-2 clinical disease. This model should prove useful for preclinical studies of SARS-CoV-2 vaccines, therapeutics and pathogenesis.


Assuntos
Adenoviridae/genética , Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Adenoviridae/imunologia , Animais , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/uso terapêutico , COVID-19/mortalidade , COVID-19/patologia , COVID-19/virologia , Vacinas contra COVID-19/genética , Cricetinae , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Humanos , Masculino , Mesocricetus , SARS-CoV-2/genética , Índice de Gravidade de Doença , Vacinas Sintéticas/genética , Vacinas Sintéticas/uso terapêutico , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...