Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1104670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36741010

RESUMO

Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Previous studies have elucidated the genomic landscape of MB leading to the recognition of four core molecular subgroups (WNT, SHH, group 3 and group 4) with distinct clinical outcomes. Group 3 has the worst prognosis of all MB. Radiotherapy (RT) remains a major component in the treatment of poor prognosis MB but is rarely curative alone and is associated with acute and long-term toxicities. A hallmark of cancer cells is their unlimited proliferative potential which correlates closely with telomere length. The vast majority of malignant tumors activate telomerase to maintain telomere length, whereas this activity is barely detectable in most normal human somatic tissues, making telomerase inhibition a rational therapeutic target in the setting of cancer recurrence and therapy resistance. We and others have previously shown that short telomeres confer sensitivity to ionizing radiation (IR) suggesting that telomerase inhibition mediated telomere shortening will improve the efficacy of RT while minimizing its side effects. Here, we investigated the efficacy of the combination of IR with IMT, a potent telomerase inhibitor, in an in vivo model of group 3 MB. Our results indicate that although IMT inhibited MB telomerase activity resulting in telomere shortening and delayed tumor growth, the combination with IR did not prevent tumor recurrence and did not improve survival compared to the treatment with IR alone. Together, these findings suggest that the radiosensitization by direct telomerase inhibition is not an effective approach to treat high-risk pediatric brain tumors.

2.
Cell Rep ; 42(2): 112103, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36773293

RESUMO

Retinoblastoma is a cancer of the infant retina primarily driven by loss of the Rb tumor suppressor gene, which is undruggable. Here, we report an autocrine signaling, mediated by secreted frizzled-related protein 2 (SFRP2), which suppresses nitric oxide and enables retinoblastoma growth. We show that coxsackievirus and adenovirus receptor (CXADR) is the cell-surface receptor for SFRP2 in retinoblastoma cells; that CXADR functions as a "dependence receptor," transmitting a growth-inhibitory signal in the absence of SFRP2; and that the balance between SFRP2 and CXADR determines nitric oxide production. Accordingly, high SFRP2 RNA expression correlates with high-risk histopathologic features in retinoblastoma. Targeting SFRP2 signaling by SFRP2-binding peptides or by a pharmacological inhibitor rapidly induces nitric oxide and profoundly inhibits retinoblastoma growth in orthotopic xenograft models. These results reveal a cytokine signaling pathway that regulates nitric oxide production and retinoblastoma cell proliferation and is amenable to therapeutic intervention.


Assuntos
Neoplasias da Retina , Retinoblastoma , Humanos , Óxido Nítrico , Proteínas Secretadas Relacionadas a Receptores Frizzled , Transdução de Sinais
3.
Mol Cancer Ther ; 22(1): 123-134, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36162055

RESUMO

In fusion-negative rhabdomyosarcoma (FN-RMS), a pediatric malignancy with skeletal muscle characteristics, >90% of high-risk patients have mutations that activate the RAS/MEK signaling pathway. We recently discovered that SNAI2, in addition to blocking myogenic differentiation downstream of MEK signaling in FN-RMS, represses proapoptotic BIM expression to protect RMS tumors from ionizing radiation (IR). As clinically relevant concentrations of the MEK inhibitor trametinib elicit poor responses in preclinical xenograft models, we investigated the utility of low-dose trametinib in combination with IR for the treatment of RAS-mutant FN-RMS. We hypothesized that trametinib would sensitize FN-RMS to IR through its downregulation of SNAI2 expression. While we observed little to no difference in myogenic differentiation or cell survival with trametinib treatment alone, robust differentiation and reduced survival were observed after IR. In addition, IR-induced apoptosis was significantly increased in FN-RMS cells treated concurrently with trametinib, as was increased BIM expression. SNAI2's role in these processes was established using overexpression rescue experiments, where overexpression of SNAI2 prevented IR-induced myogenic differentiation and apoptosis. Moreover, combining MEK inhibitor with IR resulted in complete tumor regression and a 2- to 4-week delay in event-free survival (EFS) in preclinical xenograft and patient-derived xenograft models. Our findings demonstrate that the combination of MEK inhibition and IR results in robust differentiation and apoptosis, due to the reduction of SNAI2, which leads to extended EFS in FN-RMS. SNAI2 thus is a potential biomarker of IR insensitivity and target for future therapies to sensitize aggressive sarcomas to IR.


Assuntos
Rabdomiossarcoma , Criança , Humanos , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/genética , Rabdomiossarcoma/radioterapia , Diferenciação Celular , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Quinases de Proteína Quinase Ativadas por Mitógeno , Linhagem Celular Tumoral , Fatores de Transcrição da Família Snail
4.
Clin Cancer Res ; 28(17): 3836-3849, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35797217

RESUMO

PURPOSE: We investigated why three patient-derived xenograft (PDX) childhood BRAFV600E-mutant brain tumor models are highly sensitive to trametinib. Mechanisms of acquired resistance selected in situ, and approaches to prevent resistance were also examined, which may translate to both low-grade glioma (LGG) molecular subtypes. EXPERIMENTAL DESIGN: Sensitivity to trametinib [MEK inhibitor (MEKi)] alone or in combination with rapamycin (TORC1 inhibitor), was evaluated in pediatric PDX models. The effect of combined treatment of trametinib with rapamycin on development of trametinib resistance in vivo was examined. PDX tissue and tumor cells from trametinib-resistant xenografts were characterized. RESULTS: In pediatric models TORC1 is activated through ERK-mediated inactivation of the tuberous sclerosis complex (TSC): consequently inhibition of MEK also suppressed TORC1 signaling. Trametinib-induced tumor regression correlated with dual inhibition of MAPK/TORC1 signaling, and decoupling TORC1 regulation from BRAF/MAPK control conferred trametinib resistance. In mice, acquired resistance to trametinib developed within three cycles of therapy in all three PDX models. Resistance to trametinib developed in situ is tumor-cell-intrinsic and the mechanism was tumor line specific. Rapamycin retarded or blocked development of resistance. CONCLUSIONS: In these three pediatric BRAF-mutant brain tumors, TORC1 signaling is controlled by the MAPK cascade. Trametinib suppressed both MAPK/TORC1 pathways leading to tumor regression. While low-dose intermittent rapamycin to enhance inhibition of TORC1 only modestly enhanced the antitumor activity of trametinib, it prevented or retarded development of trametinib resistance, suggesting future therapeutic approaches using rapamycin analogs in combination with MEKis that may be therapeutically beneficial in both KIAA1549::BRAF- and BRAFV600E-driven gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Alvo Mecanístico do Complexo 1 de Rapamicina , Piridonas , Pirimidinonas , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Piridonas/uso terapêutico , Pirimidinonas/uso terapêutico , Sirolimo
5.
Cancer Res ; 81(21): 5451-5463, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34462275

RESUMO

Ionizing radiation (IR) and chemotherapy are mainstays of treatment for patients with rhabdomyosarcoma, yet the molecular mechanisms that underlie the success or failure of radiotherapy remain unclear. The transcriptional repressor SNAI2 was previously identified as a key regulator of IR sensitivity in normal and malignant stem cells through its repression of the proapoptotic BH3-only gene PUMA/BBC3. Here, we demonstrate a clear correlation between SNAI2 expression levels and radiosensitivity across multiple rhabdomyosarcoma cell lines. Modulating SNAI2 levels in rhabdomyosarcoma cells through its overexpression or knockdown altered radiosensitivity in vitro and in vivo. SNAI2 expression reliably promoted overall cell growth and inhibited mitochondrial apoptosis following exposure to IR, with either variable or minimal effects on differentiation and senescence, respectively. Importantly, SNAI2 knockdown increased expression of the proapoptotic BH3-only gene BIM, and chromatin immunoprecipitation sequencing experiments established that SNAI2 is a direct repressor of BIM/BCL2L11. Because the p53 pathway is nonfunctional in the rhabdomyosarcoma cells used in this study, we have identified a new, p53-independent SNAI2/BIM signaling axis that could potentially predict clinical responses to IR treatment and be exploited to improve rhabdomyosarcoma therapy. SIGNIFICANCE: SNAI2 is identified as a major regulator of radiation-induced apoptosis in rhabdomyosarcoma through previously unknown mechanisms independent of p53.


Assuntos
Proteína 11 Semelhante a Bcl-2/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Radiação Ionizante , Rabdomiossarcoma/prevenção & controle , Fatores de Transcrição da Família Snail/metabolismo , Animais , Apoptose , Proteína 11 Semelhante a Bcl-2/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Biomarcadores Tumorais/genética , Ciclo Celular , Movimento Celular , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos SCID , RNA-Seq , Rabdomiossarcoma/etiologia , Rabdomiossarcoma/patologia , Fatores de Transcrição da Família Snail/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Pediatr Blood Cancer ; 68 Suppl 2: e28439, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32827353

RESUMO

Despite radiation therapy (RT) being an integral part of the treatment of most pediatric cancers and the recent discovery of novel molecular-targeted agents (MTAs) in this era of precision medicine with the potential to improve the therapeutic ratio of modern chemoradiotherapy regimens, there are only a few preclinical trials being conducted to discover novel radiosensitizers and radioprotectors. This has resulted in a paucity of translational clinical trials combining RT and novel MTAs. This report describes the opportunities and challenges of investigating RT together with MTAs in preclinical testing for immunotherapy, brain tumors, and sarcomas in pediatric oncology. We discuss the need for improving the collaboration between radiation oncologists, biologists, and physicists to improve the reliability, reproducibility, and translational potential of RT-based preclinical research. Current translational clinical trials using RT and MTAs for immunotherapy, brain tumors, and sarcomas are described. The technologic advances in experimental RT, availability of novel experimental tumor models, advances in immunology and tumor biology, and the discovery of novel MTAs together hold considerable promise for good quality preclinical and clinical multimodality research to improve the current rates of survival and toxicity in children afflicted with cancer.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/terapia , Quimiorradioterapia/métodos , Imunoterapia/métodos , Terapia de Alvo Molecular , Sarcoma/terapia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Criança , Humanos , Radiossensibilizantes/uso terapêutico , Sarcoma/imunologia , Sarcoma/patologia
7.
Vaccine ; 35(8): 1124-1131, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28117173

RESUMO

We have recently demonstrated the effectiveness of an influenza A virus (IAV) subunit vaccine based on biodegradable polyanhydride nanoparticles delivery in mice. In the present study, we evaluated the efficacy of ∼200nm polyanhydride nanoparticles encapsulating inactivated swine influenza A virus (SwIAV) as a vaccine to induce protective immunity against a heterologous IAV challenge in pigs. Nursery pigs were vaccinated intranasally twice with inactivated SwIAV H1N2 (KAg) or polyanhydride nanoparticle-encapsulated KAg (KAg nanovaccine), and efficacy was evaluated against a heterologous zoonotic virulent SwIAV H1N1 challenge. Pigs were monitored for fever daily. Local and systemic antibody responses, antigen-specific proliferation of peripheral blood mononuclear cells, gross and microscopic lung lesions, and virus load in the respiratory tract were compared among the groups of animals. Our pre-challenge results indicated that KAg nanovaccine induced virus-specific lymphocyte proliferation and increased the frequency of CD4+CD8αα+ T helper and CD8+ cytotoxic T cells in peripheral blood mononuclear cells. KAg nanovaccine-immunized pigs were protected from fever following SwIAV challenge. In addition, pigs immunized with the KAg nanovaccine presented with lower viral antigens in lung sections and had 6 to 8-fold reduction in nasal shedding of SwIAV four days post-challenge compared to control animals. Immunologically, increased IFN-γ secreting T lymphocyte populations against both the vaccine and challenge viruses were detected in KAg nanovaccine-immunized pigs compared to the animals immunized with KAg alone. However, in the KAg nanovaccine-immunized pigs, hemagglutination inhibition, IgG and IgA antibody responses, and virus neutralization titers were comparable to that in the animals immunized with KAg alone. Overall, our data indicated that intranasal delivery of polyanhydride-based SwIAV nanovaccine augmented antigen-specific cellular immune response in pigs, with promise to induce cross-protective immunity.


Assuntos
Anticorpos Antivirais/biossíntese , Vacinas contra Influenza/administração & dosagem , Nanopartículas/administração & dosagem , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/prevenção & controle , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Administração Intranasal , Animais , Proliferação de Células/efeitos dos fármacos , Testes de Inibição da Hemaglutinação , Imunoglobulina A/biossíntese , Imunoglobulina G/biossíntese , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N2/imunologia , Vacinas contra Influenza/química , Interferon gama/biossíntese , Interferon gama/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/virologia , Nanopartículas/química , Nanopartículas/metabolismo , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Polianidridos/química , Polianidridos/metabolismo , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/virologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/virologia , Vacinas de Produtos Inativados , Carga Viral/efeitos dos fármacos
8.
J Control Release ; 247: 194-205, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28057521

RESUMO

Swine influenza virus (SwIV) is one of the important zoonotic pathogens. Current flu vaccines have failed to provide cross-protection against evolving viruses in the field. Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable FDA approved polymer and widely used in drug and vaccine delivery. In this study, inactivated SwIV H1N2 antigens (KAg) encapsulated in PLGA nanoparticles (PLGA-KAg) were prepared, which were spherical in shape with 200 to 300nm diameter, and induced maturation of antigen presenting cells in vitro. Pigs vaccinated twice with PLGA-KAg via intranasal route showed increased antigen specific lymphocyte proliferation and enhanced the frequency of T-helper/memory and cytotoxic T cells (CTLs) in peripheral blood mononuclear cells (PBMCs). In PLGA-KAg vaccinated and heterologous SwIV H1N1 challenged pigs, clinical flu symptoms were absent, while the control pigs had fever for four days. Grossly and microscopically, reduced lung pathology and viral antigenic mass in the lung sections with clearance of infectious challenge virus in most of the PLGA-KAg vaccinated pig lung airways were observed. Immunologically, PLGA-KAg vaccine irrespective of not significantly boosting the mucosal antibody response, it augmented the frequency of IFN-γ secreting total T cells, T-helper and CTLs against both H1N2 and H1N1 SwIV. In summary, inactivated influenza virus delivered through PLGA-NPs reduced the clinical disease and induced cross-protective cell-mediated immune response in a pig model. Our data confirmed the utility of a pig model for intranasal particulate flu vaccine delivery platform to control flu in humans.


Assuntos
Antígenos Virais/administração & dosagem , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/administração & dosagem , Ácido Láctico/química , Nanopartículas/química , Infecções por Orthomyxoviridae/prevenção & controle , Ácido Poliglicólico/química , Vacinas de Produtos Inativados/administração & dosagem , Administração Intranasal , Animais , Antígenos Virais/imunologia , Antígenos Virais/uso terapêutico , Células Cultivadas , Cães , Imunidade Celular , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/uso terapêutico , Células Madin Darby de Rim Canino , Infecções por Orthomyxoviridae/imunologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Suínos , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/uso terapêutico
9.
Vet Res ; 46: 140, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26667229

RESUMO

Porcine epidemic diarrhea virus (PEDV) is an economically devastating enteric disease in the swine industry. The virus infects pigs of all ages, but it cause severe clinical disease in neonatal suckling pigs with up to 100% mortality. Currently, available vaccines are not completely effective and feedback methods utilizing PEDV infected material has variable success in preventing reinfection. Comprehensive information on the levels and duration of effector/memory IgA and IgG antibody secreting B cell response in the intestines and lymphoid organs of PEDV-infected sows, and their association with specific antibody levels in clinical samples such as plasma, oral fluid, and feces is important. Therefore, our goal in this study was to quantify PEDV specific IgA and IgG B cell responses in sows at approximately 1 and 6 months post-infection in commercial swine herds, including parity one and higher sows. Our data indicated that evaluation of both PEDV specific IgA and IgG antibody levels in the plasma and oral fluid (but not feces) samples is beneficial in disease diagnosis. PEDV specific B cell response in the intestine and spleen of infected sows decline by 6 months, and this associates with specific antibody levels in the plasma and oral fluid samples; but the virus neutralization titers in plasma remains high beyond 6 months post-infection. In conclusion, in sows infected with PEDV the presence of effector/memory B cell response and strong virus neutralization titers in plasma up to 6 months post-infection, suggests their potential to protect sows from reinfection and provide maternal immunity to neonates, but challenge studies are required to confirm such responses.


Assuntos
Anticorpos Antivirais/metabolismo , Linfócitos B/metabolismo , Infecções por Coronavirus/veterinária , Imunidade Humoral , Imunoglobulina A/metabolismo , Imunoglobulina G/metabolismo , Vírus da Diarreia Epidêmica Suína/fisiologia , Doenças dos Suínos/imunologia , Animais , Anticorpos Antivirais/sangue , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Fezes/virologia , Feminino , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Intestinos/imunologia , Intestinos/virologia , Tecido Linfoide/imunologia , Tecido Linfoide/virologia , Paridade , Suínos , Doenças dos Suínos/virologia
10.
Pediatr Blood Cancer ; 62(10): 1768-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25981859

RESUMO

PURPOSE: Curative therapy for childhood glioma presents challenges when complete resection is not possible. Patients with recurrent low-grade tumors or anaplastic astrocytoma may receive radiation treatment; however, the long-term sequellae from radiation treatment can be severe. As many childhood gliomas are associated with activation of BRAF, we have explored the combination of ionizing radiation with MEK inhibition in a model of BRAF-mutant anaplastic astrocytoma. EXPERIMENTAL DESIGN: The regulation of TORC1 signaling by BRAF was examined in BT-40 (BRAF mutant) and BT-35 (BRAF wild type) xenografts, in a cell line derived from the BT-40 xenograft and two adult BRAF mutant glioblastoma cell lines. The effect of MEK inhibition (selumetinib), XRT (total dose 10 Gy as 2 Gy daily fractions), or the combination of selumetinib and XRT was evaluated in subcutaneous BT-40 xenografts. RESULTS: Inhibition of MEK signaling by selumetinib suppressed TORC1 signaling only in the context of the BRAF-mutant both in vitro and in vivo. Inhibition of MEK signaling in BT-40 cells or in xenografts lead to a complete suppression of FANCD2 and conferred hypersensitivity to XRT in BT-40 xenografts without increasing local skin toxicity. CONCLUSIONS: Selumetinib suppressed TORC1 signaling in the context of BRAF mutation. Selumetinib caused a rapid downregulation of FANCD2 and markedly potentiated the effect of XRT. These data suggest the possibility of potentiating the effect of XRT selectively in tumor cells by MEK inhibition in the context of mutant BRAF or maintaining tumor control at lower doses of XRT that would decrease long-term sequelae.


Assuntos
Astrocitoma/genética , Astrocitoma/radioterapia , Benzimidazóis/efeitos adversos , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Radioterapia/efeitos adversos , Animais , Western Blotting , Linhagem Celular Tumoral , Feminino , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos SCID , Complexos Multiproteicos/metabolismo , Neoplasias Experimentais/genética , Neoplasias Experimentais/radioterapia , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Pediatr Blood Cancer ; 62(8): 1345-52, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25832557

RESUMO

BACKGROUND: Curative therapy for childhood sarcoma presents challenges when complete resection is not possible. Ionizing radiation (XRT) is used as a standard modality at diagnosis or recurrence for childhood sarcoma; however, local recurrence is still problematic. Most childhood sarcomas are TP53 wild type at diagnosis, although approximately 5-10% have MDM2 amplification or overexpression. PROCEDURES: The MDM2 inhibitor, RG7388, was examined alone or in combination with XRT (20Gy given in 2 Gy daily fractions) to immune-deficient mice bearing Rh18 (embryonal) or a total of 30 Gy in 2 Gy fractions to mice bearing Rh30 (alveolar) rhabdomyosarcoma xenografts. RG7388 was administered by oral gavage using two schedules (daily ×5; schedule 1 or once weekly; schedule 2). TP53-responsive gene products (p21, PUMA, DDB2, and MIC1) as well as markers of apoptosis were analyzed. RESULTS: RG7388 showed no significant single agent antitumor activity. Twenty Grays XRT induced complete regressions (CR) of Rh18 with 100 percent tumor regrowth by week 7, but no tumor regrowth at 20 weeks when combined with RG7388. RG7388 enhanced time to recurrence combined with XRT in Rh30 xenografts compared to 30 Gy XRT alone. RG7388 did not enhance XRT-induced local skin toxicity. Combination treatments induced TP53 responsive genes more rapidly and to a greater magnitude than single agent treatments. CONCLUSIONS: RG7388 enhanced the activity of XRT in both rhabdomyosarcoma models without increasing local XRT-induced skin toxicity. Changes in TP53-responsive genes were consistent with the synergistic activity of RG7388 and XRT in the Rh18 model.


Assuntos
Apoptose/efeitos da radiação , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Pirrolidinas/uso terapêutico , Radiossensibilizantes/uso terapêutico , Rabdomiossarcoma/radioterapia , para-Aminobenzoatos/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Criança , Pré-Escolar , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas de Ligação a DNA/metabolismo , Feminino , Fator 15 de Diferenciação de Crescimento/metabolismo , Humanos , Camundongos , Camundongos Nus , Recidiva Local de Neoplasia/epidemiologia , Proteínas Proto-Oncogênicas c-mdm2/biossíntese , Rabdomiossarcoma/tratamento farmacológico , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Pediatr Blood Cancer ; 62(9): 1550-1554, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25790258

RESUMO

BACKGROUND: We previously determined that radiation could be safely administered using a mouse-flank in vivo model to both alveolar (Rh30) and embryonal (Rh18) rhabdomyosarcoma xenografts. Mice from both tumor lines in this experiment developed metastases, an event not previously described with these models. We sought to determine if radiation-induced changes in gene expression underlie an increase in the metastatic behavior of these tumor models. PROCEDURE: Parental Rh18 and Rh30 xenografts, as well as tumor that recurred locally after radiotherapy (Rh18RT and Rh30RT), were grown subcutaneously in the flanks of SCID mice and then subjected to either fractionated radiotherapy or survival surgery alone. Metastasis formation was monitored and recorded. Gene expression profiling was also performed on RNA extracted from parental, recurrent, and metastatic tissue of both tumor lines. RESULTS: Rh30 and Rh30RT xenografts demonstrated metastases only if they were exposed to fractionated radiotherapy, whereas Rh18 and Rh18RT xenografts experienced significantly fewer metastatic events when treated with fractionated radiotherapy compared to survival surgery alone. Mean time to metastasis formation was 40 days in the recurrent tumors and 73 days in the parental xenografts. Gene expression profiling noted clustering of Rh30 recurrent and metastatic tissue that was independent of the parental Rh30 tissue. Rh18RT xenografts lost radiosensitivity compared to parental Rh18. CONCLUSION: Radiation therapy can significantly decrease the formation of metastases in radio-sensitive tumors (Rh18) and may induce a more pro-metastatic phenotype in radio-resistant lines (Rh30).


Assuntos
Neoplasias Abdominais/secundário , Neoplasias Induzidas por Radiação/secundário , Radioterapia/efeitos adversos , Rabdomiossarcoma Alveolar/secundário , Neoplasias Abdominais/etiologia , Animais , Axila , Fracionamento da Dose de Radiação , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Xenoenxertos , Humanos , Camundongos , Camundongos SCID , Transplante de Neoplasias , Neoplasias Induzidas por Radiação/etiologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Tolerância a Radiação , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/radioterapia , Rabdomiossarcoma Embrionário/genética , Rabdomiossarcoma Embrionário/radioterapia , Rabdomiossarcoma Embrionário/secundário , Neoplasias de Tecidos Moles/etiologia , Neoplasias de Tecidos Moles/secundário , Tela Subcutânea
13.
Clin Cancer Res ; 20(14): 3884-95, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24787670

RESUMO

PURPOSE: Alveolar rhabdomyosarcoma that harbors the PAX3-FOXO1 fusion gene (t-ARMS) is a common and lethal subtype of this childhood malignancy. Improvement in clinical outcomes in this disease is predicated upon the identification of novel therapeutic targets. EXPERIMENTAL DESIGN: Robust mouse models were used for in vivo analysis, and molecular studies were performed on xenografts treated in parallel. Two independent patient sets (n = 101 and 124) of clinically annotated tumor specimens were used for analysis of FANCD2 levels and its association with clinical and molecular characteristics and outcomes. RESULTS: Our xenograft studies reveal a selective suppression of FANCD2 by m-TOR kinase inhibition and radiosensitization of the t-ARMS line only. In the initial patient set, we show that FANCD2 transcript levels are prognostic in univariate analysis, and are significantly associated with metastatic disease and that the copresence of the translocation and high expression of FANCD2 is independently prognostic. We also demonstrate a significant and nonrandom enrichment of mTOR-associated genes that correlate with FANCD2 gene expression within the t-ARMS samples, but not within other cases. In the second patient set, we show that on a protein level, FANCD2 expression correlates with PAX3-FOXO1 fusion gene and is strongly associated with phospho-P70S6K expression in cases with the fusion gene. CONCLUSIONS: Our data demonstrate that FANCD2 may have a significant role in the radiation resistance and virulence of t-ARMS. Indirectly targeting this DNA repair protein, through mTOR inhibition, may represent a novel and selective treatment strategy.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/fisiologia , Proteínas de Fusão Oncogênica/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Rabdomiossarcoma Alveolar/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Quimiorradioterapia , Feminino , Humanos , Camundongos SCID , Morfolinas/farmacologia , Tolerância a Radiação , Rabdomiossarcoma Alveolar/tratamento farmacológico , Rabdomiossarcoma Alveolar/radioterapia , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Int J Radiat Biol ; 89(12): 1094-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23786571

RESUMO

PURPOSE: To use NanoDot dosimeters to study the RS 2000 X-ray Biological Irradiator dosimetry characteristics and perform in vivo dosimetry for cell or small animal experiments. METHODS AND MATERIALS: We first calibrated the Landauer NanoDot(™) Reader by irradiating some NanoDot dosimeters with a set of known doses at specific positions defined by the irradiator. A group of five NanoDot dosimeters were placed at five specific positions where the dose rates were known and provided by the irradiator. Each group was irradiated for a set of times respectively. By correlating the readings of dosimeters with the given irradiated doses, we established the dose-reading relationship for the irradiator under the specific running condition. The established calibration curve was validated by exposing arbitrary known doses to a set of dosimeters, using the Landauer NanoDot(™) Reader to measure the doses, and then making the comparison between the two doses. To study the dose gradient of the X-ray inside the irradiated target (dose variation/cm), we placed dosimeters under different thicknesses of water-equivalent bolus and irradiated them, then measured the doses to determine the dose gradient. RESULTS: Using the method described above, we were able to calibrate the Landauer InLight NanoDot(™) Reader and use NanoDot dosimeters to measure the actual doses delivered to the targets for the cell/small animal experiments that use the RS 2000 X-ray Biological Irradiator. CONCLUSIONS: NanoDots are ideal dosimeters to use for in vivo dosimetry for cell/small animal irradiation experiments. The dose decrease inside the animal tissue is about 20% per cm.


Assuntos
Radiometria/instrumentação , Radiometria/métodos , Raios X , Animais , Calibragem , Desenho de Equipamento , Íons , Camundongos , Nanotecnologia/métodos , Doses de Radiação , Espalhamento de Radiação
15.
Pediatr Blood Cancer ; 60(3): 377-382, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22692929

RESUMO

BACKGROUND: The Pediatric Preclinical Testing Program (PPTP) has been successfully used to determine the efficacy of novel agents against solid tumors by testing them within a mouse-flank in vivo model. To date, radiation therapy has not been applied to this system. We report on the feasibility and biologic outcomes of a pilot study using alveolar and embryonal rhabdomyosarcoma xenograft lines. PROCEDURES: We developed a high-throughput mouse-flank irradiation device that allows the safe delivery of radiotherapy in clinically relevant doses. For our pilot study, two rhabdomyosarcoma xenograft lines from the PPTP, Rh30 (alveolar) and Rh18 (embryonal) were selected. Using established methods, xenografts were implanted, grown to appropriate volumes, and were subjected to fractionated radiotherapy. Tumor response-rates, growth kinetics, and event-free survival time were measured. RESULTS: Once optimized, the rate of acute toxicity requiring early removal from study in 93 mice was only 3%. During the optimization phase, it was observed that the alveolar Rh30 xenograft line demonstrated a significantly greater radiation resistance than embryonal Rh18 in vivo. This finding was validated within the standardized 30 Gy treatment phase, resulting in overall treatment failure rates of 10% versus 60% for the embryonal versus alveolar subtype, respectively. CONCLUSIONS: Our pilot study demonstrated the feasibility of our device which enables safe, clinically relevant focal radiation delivery to immunocompromised mice. It further recapitulated the expected clinical radiobiology.


Assuntos
Fracionamento da Dose de Radiação , Ensaios de Triagem em Larga Escala/instrumentação , Radioterapia/instrumentação , Radioterapia/métodos , Rabdomiossarcoma/radioterapia , Animais , Humanos , Camundongos , Projetos Piloto , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...