Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Physiol Biochem ; 128(6): 1516-1523, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32551929

RESUMO

CONTEXT: Infarction leads to a decrease in NO bioavailability in the erythrocytes. Thyroid hormones (TH) present positive effects after infarction. However, there are no studies evaluating the effects of cardioprotective doses of TH in the erythrocytes after infarction. OBJECTIVE: This study aimed to evaluate the effects of TH in NO bioavailability and oxidative stress parameters in the erythrocytes of infarcted rats. MATERIAL AND METHODS: Wistar rats were allocated into the three groups: Sham-operated (SHAM), infarcted (AMI) and infarcted + TH (AMIT). AMIT rats received T4 and T3 for 12 days by gavage. Subsequently, the animals were evaluated by echocardiography and the LV and erythrocytes were collected. RESULTS: TH improved NO bioavailability and increased catalase activity in the erythrocytes. Besides that, TH increased HIF-1α in the heart. CONCLUSION: TH seems to be positive for erythrocytes preventing a decrease in NO bioavailability and increasing antioxidant enzymatic defense after infarction.


Assuntos
Antioxidantes , Infarto do Miocárdio , Animais , Ratos , Catalase , Eritrócitos , Infarto do Miocárdio/prevenção & controle , Infarto do Miocárdio/metabolismo , Ratos Wistar , Hormônios Tireóideos/farmacologia , Óxido Nítrico
2.
Curr Aging Sci ; 11(2): 126-132, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30073935

RESUMO

BACKGROUND: Dehydroepiandrosterone (DHEA) is an important precursor of active steroid hormone, produced abundantly by the adrenal cortex with an age-dependent pattern. OBJECTIVE: We investigated whether chronic DHEA administration impacts on redox status and on Akt protein activation in skeletal muscle during the aging process (3 and 24 months-old rats). METHODS: Rats received one weekly dose/5 weeks of DHEA (10 mg/kg) or vehicle. Gastrocnemius muscle was removed to evaluate glutathione system, hydrogen peroxide, antioxidant enzymes, and expression of Akt kinase protein. RESULTS: In the 3-months-old rats DHEA induced an increase in hydrogen peroxide when compared both to its control (276%) and the 24-months-old DHEA group (485%). Moreover, in the 24- months-old rats DHEA caused an increase in GSSG (41 and 28%), a decrease in reduced-GSH (55 and 51%), and a more oxidized redox status (reduction in GSH/GSSG ratio, 47 and 65 %) when compared to 3-month-old DHEA and to 24-months-old control groups, respectively. Both older groups had increased G6PDH (2.7 fold) and GST (1.7 fold) activities when compared to younger groups, independently of any DHEA treatment. However, there was no modulation of Akt protein (phosphorylated/total isoform). CONCLUSION: The results show that chronic DHEA administration to 3 and 24-months-old rats may not present positive effects regarding the redox environment in skeletal muscle without modulation of pro-survival Akt kinase. Due to the large-scale self-administration of DHEA as an "anti-aging" dietary supplement, it is crucial to investigate its molecular mechanisms over oxidative stressinduced related diseases.


Assuntos
Envelhecimento/metabolismo , Desidroepiandrosterona/farmacologia , Músculo Esquelético/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fatores Etários , Animais , Biomarcadores/metabolismo , Ativação Enzimática , Glucosefosfato Desidrogenase/metabolismo , Dissulfeto de Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Masculino , Músculo Esquelético/metabolismo , Oxirredução , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Fatores de Tempo
3.
Mol Cell Endocrinol ; 461: 132-142, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-28888669

RESUMO

Myocardial infarction leads to oxidative stress and promotes activation of the TLR4/NF-κß proinflammatory pathway. Thyroid hormones (TH) are known to be cardioprotective after infarction. However, there are no studies evaluating whether TH could modulate this pathway in the heart. This study aimed to verify the effect of thyroid hormones on the TLR4/NF-κß pathway after myocardial infarction. Male Wistar rats were allocated into the following groups: Sham-operated (SHAM), sham-operated + TH (SHAMT), infarcted (AMI) and infarcted + TH (AMIT). The treated rats received T4 and T3 (8 and 2 µg 100 g-1 day-1) for 12 days by gavage. Subsequently, the animals were evaluated by echocardiography and euthanized, and the left ventricle was collected for biochemical and molecular analyses. TH modulates TLR4/NF-κß expression in the infarcted hearts of rats and decreases xanthine oxidase expression. These effects were related to cardiac functional improvement after infarction. The cardioprotective effects of T3 and T4 seem to involve an anti-inflammatory action.


Assuntos
Ventrículos do Coração/fisiopatologia , Inflamação/patologia , Infarto do Miocárdio/fisiopatologia , NF-kappa B/metabolismo , Transdução de Sinais , Hormônios Tireóideos/farmacologia , Receptor 4 Toll-Like/metabolismo , Animais , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Inflamação/metabolismo , Masculino , Fator 88 de Diferenciação Mieloide/metabolismo , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Receptores dos Hormônios Tireóideos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Xantina Oxidase/metabolismo
4.
Eur J Pharmacol ; 791: 788-793, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27769700

RESUMO

Studies have shown a cardioprotective role of thyroid hormones (THs) in cardiac remodeling after acute myocardial infarction (MI). However, there is no data in the literature examining the influence of TH administration on the aortic tissue in an animal model of MI. This study aimed to evaluate the effects of thyroid hormones on the aorta after MI. Male Wistar rats were divided into a sham group (SHAM), infarcted group (AMI), sham+TH (SHAMT) and AMI+TH (AMIT). After MI, the animals received T3 and T4 (2 and 8µg/100g/day, respectively) by oral gavage for 12 days. Later, the animals underwent echocardiography and euthanasia and the aorta was collected for molecular and biochemical analysis. T3 and T4 administration increased the expression of the pro-angiogenic proteins vascular endothelial growth factor (VEGF) and hypoxia inducible factor 1α (HIF-1α) in the aorta of AMIT rats when compared with AMI. With respect to TH receptors, AMI rats presented a decrease in TRß levels, which was prevented by the hormonal administration. In AMIT rats, both TRα and TRß levels were increased when compared with the AMI group. Reactive oxygen species levels and NADPH oxidase activity were decreased in both treated groups when compared with the non-treated animals. TH administration after MI may improve angiogenic signaling in the aorta as well as the responsiveness of this vessel to T3 and T4. These positive effects in the aorta may result in additional protection for the cardiovascular system in the context of cardiac ischaemic injury.


Assuntos
Aorta/efeitos dos fármacos , Aorta/metabolismo , Infarto do Miocárdio/patologia , Hormônios Tireóideos/farmacologia , Angiotensina I/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Infarto do Miocárdio/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Xantina Oxidase/metabolismo
5.
Apoptosis ; 21(2): 184-94, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26659365

RESUMO

Apoptosis is a key process associated with pathological cardiac remodelling in early-phase post-myocardial infarction. In this context, several studies have demonstrated an anti-apoptotic effect of thyroid hormones (TH). The aim of this study was to evaluate the effects of TH on the expression of proteins associated with the apoptotic process 14 days after infarction. Male Wistar rats (300-350 g) (n = 8/group) were divided into four groups: Sham-operated (SHAM), infarcted (AMI), sham-operated + TH (SHAMT) and infarcted + TH (AMIT). For 12 days, the animals received T3 and T4 [2 and 8 µg/(100 g day)] by gavage. After this, the rats were submitted to haemodynamic and echocardiographic analysis, and then were sacrificed and the heart tissue was collected for molecular analysis. Statistical analyses included two-way ANOVA with Student-Newman-Keuls post test. Ethics Committee number: 23262. TH administration prevented the loss of ventricular wall thickness and improved cardiac function in the infarcted rats 14 days after the injury. AMI rats presented an increase in the pro-apoptotic proteins p53 and JNK. The hormonal treatment prevented this increase in AMIT rats. In addition, TH administration decreased the Bax:Bcl-2 ratio in the infarcted rats. TH administration improved cardiac functional parameters, and decreased the expression of pro-apoptotic proteins 14 days after myocardial infarction.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Cardiotônicos/administração & dosagem , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/metabolismo , Tiroxina/administração & dosagem , Tri-Iodotironina/administração & dosagem , Animais , Proteínas Reguladoras de Apoptose/genética , Cardiotônicos/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Expressão Gênica , Peroxidação de Lipídeos , Masculino , Infarto do Miocárdio/metabolismo , Miocárdio/patologia , Oxirredução , Estresse Oxidativo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Tiroxina/farmacocinética , Tri-Iodotironina/farmacocinética , Pressão Ventricular/efeitos dos fármacos
6.
Mol Cell Biochem ; 401(1-2): 61-70, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25481685

RESUMO

Sulforaphane is a naturally occurring isothiocyanate capable of stimulating cellular antioxidant defenses and inducing phase 2 detoxifying enzymes, which can protect cells against oxidative damage. Oxidative stress and apoptosis are intimately involved in the pathophysiology of cardiac diseases. Although sulforaphane is known for its anticancer benefits, its role in cardiac cells is just emerging. The aim of the present study was to investigate whether sulforaphane can modulate oxidative stress, apoptosis, and correlate with PGC-1α, a transcriptional cofactor involved in energy metabolism. H9c2 cardiac myoblasts were incubated with R-sulforaphane 5 µmol/L for 24 h. Cell viability, ANP gene expression, oxidative stress and apoptosis markers, and protein expression of PGC-1α were studied. In cells treated with sulforaphane, cellular viability increased (12 %) and ANP gene expression decreased (46 %) compared to control cells. Moreover, sulforaphane induced a significant increase in superoxide dismutase (103 %), catalase (101 %), and glutathione S-transferase (72 %) activity, reduced reactive oxygen species levels (15 %) and lipid peroxidation (65 %), as well as stimulated the expression of the cytoprotective enzyme heme oxygenase-1 (4-fold). Sulforaphane also promoted an increase in the expression of the anti-apoptotic protein Bcl-2 (60 %), decreasing the Bax/Bcl-2 ratio. Active Caspase 3\7 and p-JNK/JNK were also reduced by sulforaphane, suggesting a reduction in apoptotic signaling. This was associated with an increased protein expression of PGC-1α (42 %). These results suggest that sulforaphane offers cytoprotection to cardiac cells by activating PGC1-α, reducing oxidative stress, and decreasing apoptosis signaling.


Assuntos
Antioxidantes/farmacologia , Isotiocianatos/farmacologia , Mioblastos Cardíacos/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Apoptose , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Mioblastos Cardíacos/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Transdução de Sinais/efeitos dos fármacos , Sulfóxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA