Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(11): 5634-5646, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37158237

RESUMO

In this study, we specifically visualized DNA molecules at their AT base pairs after in vitro phage ejection. Our AT-specific visualization revealed that either end of the DNA molecule could be ejected first with a nearly 50% probability. This observation challenges the generally accepted theory of Last In First Out (LIFO), which states that the end of the phage λ DNA that enters the capsid last during phage packaging is the first to be ejected, and that both ends of the DNA are unable to move within the extremely condensed phage capsid. To support our observations, we conducted computer simulations that revealed that both ends of the DNA molecule are randomized, resulting in the observed near 50% probability. Additionally, we found that the length of the ejected DNA by LIFO was consistently longer than that by First In First Out (FIFO) during in vitro phage ejection. Our simulations attributed this difference in length to the stiffness difference of the remaining DNA within the phage capsid. In conclusion, this study demonstrates that a DNA molecule within an extremely dense phage capsid exhibits a degree of mobility, allowing it to switch ends during ejection.


Assuntos
Bacteriófago lambda , DNA Viral , Empacotamento do Genoma Viral , Bacteriófago lambda/fisiologia , DNA Viral/metabolismo , Capsídeo/metabolismo
2.
Molecules ; 27(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36014487

RESUMO

Fluorescent protein-DNA-binding peptides or proteins (FP-DBP) are a powerful means to stain and visualize large DNA molecules on a fluorescence microscope. Here, we constructed 21 kinds of FP-DBPs using various colors of fluorescent proteins and two DNA-binding motifs. From the database of fluorescent proteins (FPbase.org), we chose bright FPs, such as RRvT, tdTomato, mNeonGreen, mClover3, YPet, and mScarlet, which are four to eight times brighter than original wild-type GFP. Additionally, we chose other FPs, such as mOrange2, Emerald, mTurquoise2, mStrawberry, and mCherry, for variations in emitting wavelengths. For DNA-binding motifs, we used HMG (high mobility group) as an 11-mer peptide or a 36 kDa tTALE (truncated transcription activator-like effector). Using 21 FP-DBPs, we attempted to stain DNA molecules and then analyzed fluorescence intensities. Most FP-DBPs successfully visualized DNA molecules. Even with the same DNA-binding motif, the order of FP and DBP affected DNA staining in terms of brightness and DNA stretching. The DNA staining pattern by FP-DBPs was also affected by the FP types. The data from 21 FP-DBPs provided a guideline to develop novel DNA-binding fluorescent proteins.


Assuntos
DNA , Corantes Fluorescentes , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Corantes Fluorescentes/química , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...