Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Pharmacokinet ; 57(2): 209-219, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28497259

RESUMO

BACKGROUND: Valproic acid, a histone deacetylase inhibitor, has beneficial effects in the setting of cancer, neurologic diseases, and traumatic injuries. In animal models of traumatic injury, a single dose of valproic acid has been shown to reduce mortality. The purpose of this trial was to determine the maximum tolerated single dose of intravenous valproic acid in healthy humans. METHODS: A double-blinded, placebo-controlled, dose-escalation trial design was used to identify dose-limiting toxicities in healthy subjects who received a single dose of intravenous valproic acid. Patients were monitored for adverse events and data were collected for pharmacokinetic, pharmacodynamic, and safety profiling of valproic acid. RESULTS: Fifty-nine healthy subjects (mean 30 ± 12 years) were enrolled. Forty-four subjects received valproic acid in doses from 15 to 150 mg/kg. The most common adverse events were hypoacusis (n = 19), chills (n = 18), and headache (n = 16). The maximum tolerated dose was 140 mg/kg. Dose-limiting toxicities included headache and nausea lasting longer than 12 h. No drug-related abnormalities were seen in other safety measures including laboratory tests, hemodynamic parameters, cardiac rhythm monitoring, and cognitive testing. A two-compartment model was predictive of valproic acid concentration-time profiles, with a strong correlation (R 2 = 0.56) observed between the number of reported adverse events and the dose level. CONCLUSIONS: The maximum tolerated dose of intravenous valproic acid in healthy subjects is 140 mg/kg. This is significantly higher than the previously established maximum tolerated dose of 60-75 mg/kg. Next, the safety and tolerability of high-dose valproic acid will be tested in trauma patients in hemorrhagic shock. ClinicalTrials.gov Identifier: NCT01951560.


Assuntos
Inibidores de Histona Desacetilases/administração & dosagem , Modelos Biológicos , Ácido Valproico/administração & dosagem , Administração Intravenosa , Adolescente , Adulto , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Inibidores de Histona Desacetilases/efeitos adversos , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Ácido Valproico/efeitos adversos , Adulto Jovem
2.
J Trauma Acute Care Surg ; 81(6): 1020-1027, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27602906

RESUMO

BACKGROUND: High doses of the histone deacetylase inhibitor valproic acid (VPA, 150-400 mg/kg) improve outcomes in animal models of lethal insults. We are conducting a US Food and Drug Administration-approved Phase I, double-blind, placebo-controlled trial to evaluate the safety and tolerability of ascending doses of VPA in human volunteers. We hypothesized that VPA would induce significant changes in the proteome of healthy humans when given at doses lower than those used in prior animal studies. METHODS: Peripheral blood mononuclear cells were obtained from three healthy subjects randomized to receive VPA (120 mg/kg over 1 hour) at baseline and at 4 and 8 hours following infusion. Detailed proteomic analysis was performed using 1D gel electrophoresis, liquid chromatography, and mass spectrometry. Proteins with differential expression were chosen for functional annotation and pathway analysis using Ingenuity Pathway Analysis (Qiagen GmbH, Hilden, Germany) and Panther Gene Ontology. RESULTS: A total of 3,074 unique proteins were identified. The average number of proteins identified per sample was 1,716 ± 459. There were a total of 140 unique differentially expressed proteins (p < 0.05). There was a minor and inconsistent increase in histone and nonhistone protein acetylation. Functional annotation showed significant enrichment of apoptosis (p = 3.5E-43), cell death (p = 9.9E-72), proliferation of cells (p = 1.6E-40), dementia (p = 9.6E-40), amyloidosis (p = 6.3E-38), fatty acid metabolism (p = 4.6E-76), quantity of steroid (p = 4.2E-75), and cell movement (p = 1.9E-64). CONCLUSIONS: Valproic acid induces significant changes to the proteome of healthy humans when given at a dose of 120 mg/kg. It alters the expression of key proteins and pathways, including those related to cell survival, without significant modification of protein acetylation. In the next part of the ongoing Phase I trial, we will study the effects of VPA on trauma patients in hemorrhagic shock. LEVEL OF EVIDENCE: Therapeutic study, level V.


Assuntos
Anticonvulsivantes/farmacologia , Proteoma/efeitos dos fármacos , Ácido Valproico/farmacologia , Acetilação , Adulto , Relação Dose-Resposta a Droga , Método Duplo-Cego , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
J Trauma Acute Care Surg ; 79(6): 911-9; discussion 919, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26680134

RESUMO

BACKGROUND: Combined traumatic brain injury (TBI) and hemorrhagic shock (HS) is highly lethal. In a nonsurvival model of TBI + HS, addition of high-dose valproic acid (VPA) (300 mg/kg) to hetastarch reduced brain lesion size and associated swelling 6 hours after injury; whether this would have translated into better neurologic outcomes remains unknown. It is also unclear whether lower doses of VPA would be neuroprotective. We hypothesized that addition of low-dose VPA to normal saline (NS) resuscitation would result in improved long-term neurologic recovery and decreased brain lesion size. METHODS: TBI was created in anesthetized swine (40-43 kg) by controlled cortical impact, and volume-controlled hemorrhage (40% volume) was induced concurrently. After 2 hours of shock, animals were randomized (n = 5 per group) to NS (3× shed blood) or NS + VPA (150 mg/kg). Six hours after resuscitation, packed red blood cells were transfused, and animals were recovered. Peripheral blood mononuclear cells were analyzed for acetylated histone-H3 at lysine-9. A Neurological Severity Score (NSS) was assessed daily for 30 days. Brain magnetic resonance imaging was performed on Days 3 and 10. Cognitive performance was assessed by training animals to retrieve food from color-coded boxes. RESULTS: There was a significant increase in histone acetylation in the NS + VPA-treated animals compared with NS treatment. The NS + VPA group demonstrated significantly decreased neurologic impairment and faster speed of recovery as well as smaller brain lesion size compared with the NS group. Although the final cognitive function scores were similar between the groups, the VPA-treated animals reached the goal significantly faster than the NS controls. CONCLUSION: In this long-term survival model of TBI + HS, addition of low-dose VPA to saline resuscitation resulted in attenuated neurologic impairment, faster neurologic recovery, smaller brain lesion size, and a quicker normalization of cognitive functions.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Neuroproteção , Ressuscitação/métodos , Choque Hemorrágico/tratamento farmacológico , Cloreto de Sódio/farmacologia , Ácido Valproico/farmacologia , Animais , Western Blotting , Cognição , Modelos Animais de Doenças , Feminino , Derivados de Hidroxietil Amido/farmacologia , Imageamento por Ressonância Magnética , Distribuição Aleatória , Suínos , Ácido Valproico/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA