Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultramicroscopy ; 219: 113127, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33059174

RESUMO

Gamma-alumina (γ-Al2O3), like other low-Z oxides, is readily damaged when exposed to an electron beam. This typically results in the formation of a characteristic pre-edge peak in the oxygen-K edge of electron energy-loss spectra (EELS) acquired during or after the damage process. This artifact can mask the presence of intrinsic O-K edge fine structure that would reveal chemical properties of the material; therefore, its suppression is key. In this work, we systematically investigate the conditions that give rise to the damage-induced O-K pre-edge peak and show that it can be effectively suppressed by performing EELS experiments at cryogenic (cryo) temperatures. Prolonged exposure of γ-Al2O3 to a focused electron beam results in a hole bored through the sample; this was used as a reproducible beam damage condition. O-K edge EELS spectra were collected from a single-crystal γ-Al2O3 sample both during and after focused electron beam hole drilling, and at room and cryo temperatures, using a monochromated scanning transmission electron microscope (STEM). The characteristic 531 eV pre-edge peak visible in the room temperature EELS spectra was completely suppressed in the cryo-EELS spectra, even in the presence of a visible drilled hole. We then correlated these experimental observations with multiple-scattering EELS simulations to determine the likely atomistic origin of the damage-induced O-K pre-edge peak. The findings indicate that the pre-edge peak is caused primarily by the presence of surface O-O bonds formed during beam damage, and that operating at cryo temperature suppresses the formation of surface O-O bonds, thus preventing formation of the O-K pre-edge peak. Additionally, Al-L2,3 edge EELS spectra revealed Al loss primarily from tetrahedral sites during hole drilling.

2.
Chemistry ; 24(46): 12037-12043, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30011117

RESUMO

Bimetallic nanoparticles are widely studied, for example in catalysis. However, possible restructuring in the environment of use, such as segregation or alloying, may occur. Taken individually, state-of-the-art analytical tools fail to give an overall picture of these transformations. This study combines an ensemble analysis (near-ambient-pressure X-ray photoelectron spectroscopy) with a local analysis (environmental transmission electron microscopy) to provide an in situ description of the restructuring of core-shell nickel-cobalt nanoparticles exposed to cycles of reduction and oxidation. It reveals a partial surface alloying accompanied by fragmentation of the shell into smaller clusters, which is not reversible. Beyond this case study, the methodology proposed here should be applicable in a broad range of studies dealing with the reactivity of mono- or bi-metallic metal nanoparticles.

3.
Angew Chem Int Ed Engl ; 56(38): 11394-11398, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28710839

RESUMO

Efficient, stable catalysts with high selectivity for a single product are essential if electroreduction of CO2 is to become a viable route to the synthesis of industrial feedstocks and fuels. A plasma oxidation pre-treatment of silver foil enhances the number of low-coordinated catalytically active sites, which dramatically lowers the overpotential and increases the activity of CO2 electroreduction to CO. At -0.6 V versus RHE more than 90 % Faradaic efficiency towards CO was achieved on a pre-oxidized silver foil. While transmission electron microscopy (TEM) and operando X-ray absorption spectroscopy showed that oxygen species can survive in the bulk of the catalyst during the reaction, quasi in situ X-ray photoelectron spectroscopy showed that the surface is metallic under reaction conditions. DFT calculations reveal that the defect-rich surface of the plasma-oxidized silver foils in the presence of local electric fields drastically decrease the overpotential of CO2 electroreduction.

4.
Microsc Microanal ; 23(4): 782-793, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28625222

RESUMO

This paper reports on the substantial improvement of specimen quality by use of a low voltage (0.05 to ~1 keV), small diameter (~1 µm), argon ion beam following initial preparation using conventional broad-beam ion milling or focused ion beam. The specimens show significant reductions in the amorphous layer thickness and implanted artifacts. The targeted ion milling controls the specimen thickness according to the needs of advanced aberration-corrected and/or analytical transmission electron microscopy applications.

5.
J Appl Phys ; 122(23): 234303, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29307918

RESUMO

The reduction reactions and densification of nanochains assembled from γ-Fe2O3 nanoparticles were investigated using in situ transmission electron microscopy (TEM). Morphological changes and reduction of the metal oxide nanochains were observed during in situ TEM annealing through simultaneous imaging and quantitative analysis of the near-edge fine structures of Fe L2,3 absorption edges acquired by spatially resolved electron energy loss spectroscopy. A change in the oxidation states during annealing of the iron oxide nanochains was observed with phase transformations due to continuous reduction from Fe2O3 over Fe3O4, FeO to metallic Fe. Phase transitions during the in situ heating experiments were accompanied with morphological changes in the nanochains, specifically rough-to-smooth surface transitions below 500 °C, neck formation between adjacent particles around 500 °C, and subsequent neck growth. At higher temperatures, coalescence of FeO particles was observed, representing densification.

7.
Ultramicroscopy ; 169: 22-29, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27421079

RESUMO

High-resolution transmission electron microscopy (HRTEM) examination of nanoparticles requires their placement on some manner of support - either TEM grid membranes or part of the material itself, as in many heterogeneous catalyst systems - but a systematic quantification of the practical imaging limits of this approach has been lacking. Here we address this issue through a statistical evaluation of how nanoparticle size and substrate thickness affects the ability to resolve structural features of interest in HRTEM images of metallic nanoparticles on common support membranes. The visibility of lattice fringes from crystalline Au nanoparticles on amorphous carbon and silicon supports of varying thickness was investigated with both conventional and aberration-corrected TEM. Over the 1-4nm nanoparticle size range examined, the probability of successfully resolving lattice fringes differed significantly as a function both of nanoparticle size and support thickness. Statistical analysis was used to formulate guidelines for the selection of supports and to quantify the impact a given support would have on HRTEM imaging of crystalline structure. For nanoparticles ≥1nm, aberration-correction was found to provide limited benefit for the purpose of visualizing lattice fringes; electron dose is more predictive of lattice fringe visibility than aberration correction. These results confirm that the ability to visualize lattice fringes is ultimately dependent on the signal-to-noise ratio of the HRTEM images, rather than the point-to-point resolving power of the microscope. This study provides a benchmark for HRTEM imaging of crystalline supported metal nanoparticles and is extensible to a wide variety of supports and nanostructures.

8.
Nat Commun ; 7: 12123, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27356485

RESUMO

There is an urgent need to develop technologies that use renewable energy to convert waste products such as carbon dioxide into hydrocarbon fuels. Carbon dioxide can be electrochemically reduced to hydrocarbons over copper catalysts, although higher efficiency is required. We have developed oxidized copper catalysts displaying lower overpotentials for carbon dioxide electroreduction and record selectivity towards ethylene (60%) through facile and tunable plasma treatments. Herein we provide insight into the improved performance of these catalysts by combining electrochemical measurements with microscopic and spectroscopic characterization techniques. Operando X-ray absorption spectroscopy and cross-sectional scanning transmission electron microscopy show that copper oxides are surprisingly resistant to reduction and copper(+) species remain on the surface during the reaction. Our results demonstrate that the roughness of oxide-derived copper catalysts plays only a partial role in determining the catalytic performance, while the presence of copper(+) is key for lowering the onset potential and enhancing ethylene selectivity.

9.
J Mater Chem A Mater ; 2(32): 12974-12981, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25254112

RESUMO

The contamination of drinking water with naturally occurring arsenic is a global health threat. Filters that are packed with adsorbent media with a high affinity for arsenic have been used to de-contaminate water - generally iron or aluminium oxides are favored materials. Recently, nanoparticles have been introduced as adsorbent media due to their superior efficiency compared to their bulk counter-parts. An efficient nanoadsorbent should ideally possess high surface area, be easy to synthesize, and most importantly offer a high arsenic removal capacity. Achieving all the key features in a single step synthesis is an engineering challenge. We have successfully engineered such a material in the form of nanochains synthesized via a one step flame synthesis. The ultra-long γ-Fe2O3 nanochains possess high surface area (151.12 m2 g-1), large saturation magnetization (77.1 emu g-1) that aids in their gas phase self-assembly into long chains in an external magnetic field, along with an extraordinary arsenic removal capacity (162 mg.g-1). A filter made with this material exhibited a relatively low-pressure drop and very little break-through of the iron oxide across the filter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...