Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 11: 1382652, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803805

RESUMO

Low back pain poses a significant societal burden, with progressive intervertebral disc degeneration (IDD) emerging as a pivotal contributor to chronic pain. Improved animal models of progressive IDD are needed to comprehensively investigate new diagnostic and therapeutic approaches to managing IDD. Recent studies underscore the immune system's involvement in IDD, particularly with regards to the role of immune privileged tissues such as the nucleus pulposus (NP) becoming an immune targeting following initial disc injury. We therefore hypothesized that generating an active immune response against NP antigens with an NP vaccine could significantly accelerate and refine an IDD animal model triggered by mechanical puncture of the disc. To address this question, rabbits were immunized against NP antigens following disc puncture, and the impact on development of progressive IDD was assessed radiographically, functionally, and histologically compared between vaccinated and non-vaccinated animals over a 12-week period. Immune responses to NP antigens were assessed by ELISA and Western blot. We found that the vaccine elicited strong immune responses against NP antigens, including a dominant ~37 kD antigen. Histologic evaluation revealed increases IDD in animals that received the NP vaccine plus disc puncture, compared to disc puncture and vaccine only animals. Imaging evaluation evidenced a decrease in disc height index and higher scores of disc degeneration in animals after disc punctures and in those animals that received the NP vaccine in addition to disc puncture. These findings therefore indicate that it is possible to elicit immune responses against NP antigens in adult animals, and that these immune responses may contribute to accelerated development of IDD in a novel immune-induced and accelerated IDD model.

2.
Front Bioeng Biotechnol ; 10: 1018257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36394049

RESUMO

Following herniation of the intervertebral disc, there is a need for advanced surgical strategies to protect the diseased tissue from further herniation and to minimize further degeneration. Accordingly, a novel tissue engineered implant for annulus fibrosus (AF) repair was fabricated via three-dimensional fiber deposition and evaluated in a large animal model. Specifically, lumbar spine kinetics were assessed for eight (n = 8) cadaveric ovine lumbar spines in three pure moment loading settings (flexion-extension, lateral bending, and axial rotation) and three clinical conditions (intact, with a defect in the AF, and with the defect treated using the AF repair implant). In ex vivo testing, seven of the fifteen evaluated biomechanical measures were significantly altered by the defect. In each of these cases, the treated spine more closely approximated the intact biomechanics and four of these cases were also significantly different to the defect. The same spinal kinetics were also assessed in a preliminary in vivo study of three (n = 3) ovine lumbar spines 12 weeks post-implantation. Similar to the ex vivo results, functional efficacy of the treatment was demonstrated as compared to the defect model at 12 weeks post-implantation. These promising results motivate a future large animal study cohort which will establish statistical power of these results further elucidate the observed outcomes, and provide a platform for clinical translation of this novel AF repair patch strategy. Ultimately, the developed approach to AF repair holds the potential to maintain the long-term biomechanical function of the spine and prevent symptomatic re-herniation.

3.
JOR Spine ; 5(4): e1235, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36601369

RESUMO

Intervertebral disc degeneration is a common cause of low back pain, the leading cause of disability worldwide. Appropriate preclinical models for intervertebral disc research are essential to achieving a better understanding of underlying pathophysiology and for the development, evaluation, and translation of more effective treatments. To this end, in vivo animal and ex vivo organ culture models are both widely used by spine researchers; however, the relative strengths and weaknesses of these two approaches are a source of ongoing controversy. In this article, members from the Spine and Preclinical Models Sections of the Orthopedic Research Society, including experts in both basic and translational spine research, present contrasting arguments in support of in vivo animal models versus ex vivo organ culture models for studies of the disc, supported by a comprehensive review of the relevant literature. The objective is to provide a deeper understanding of the respective advantages and limitations of these approaches, and advance the field toward a consensus with respect to appropriate model selection and implementation. We conclude that complementary use of several model types and leveraging the unique advantages of each is likely to result in the highest impact research in most instances.

4.
JOR Spine ; 4(2): e1162, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34337336

RESUMO

Preclinical studies involving large animal models aim to recapitulate the clinical situation as much as possible and bridge the gap from benchtop to bedside. To date, studies investigating intervertebral disc (IVD) degeneration and regeneration in large animal models have utilized a wide spectrum of methodologies for outcome evaluation. This paper aims to consolidate available knowledge, expertise, and experience in large animal preclinical models of IVD degeneration to create a comprehensive tool box of anatomical and functional outcomes. Herein, we present a Large Animal IVD Scoring Algorithm based on three scales: macroscopic (gross morphology, imaging, and biomechanics), microscopic (histological, biochemical, and biomolecular analyses), and clinical (neurologic state, mobility, and pain). The proposed algorithm encompasses a stepwise evaluation on all three scales, including spinal pain assessment, and relevant structural and functional components of IVD health and disease. This comprehensive tool box was designed for four commonly used preclinical large animal models (dog, pig, goat, and sheep) in order to facilitate standardization and applicability. Furthermore, it is intended to facilitate comparison across studies while discerning relevant differences between species within the context of outcomes with the goal to enhance veterinary clinical relevance as well. Current major challenges in pre-clinical large animal models for IVD regeneration are highlighted and insights into future directions that may improve the understanding of the underlying pathologies are discussed. As such, the IVD research community can deepen its exploration of the molecular, cellular, structural, and biomechanical changes that occur with IVD degeneration and regeneration, paving the path for clinically relevant therapeutic strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...