Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 11): 1757-1761, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33209348

RESUMO

The structure of the title compound, [CoCl2(C19H27N7S2)(H2O)], at 173 K has monoclinic (C2/c) symmetry. We report here the synthesis, single-crystal structure, electrospray mass spectrum and NMR spectroscopy of a new six-coordinate cobalt(II) pincer complex. The pincer ligand, in this complex, which is novel, coordinates via three nitro-gen atoms (two triazole and one pyridine). The ligand is ambidentate and can coordinate via three nitro-gen atoms or two sulfur and one nitro-gen atoms. The cobalt(II) metal center has pseudo-octa-hedral geometry and based on the single-crystal structure, the pincer ligand coordinates in a meridional fashion with the metal and adjacent six-membered ring ligands all in a similar plane and forming two slightly distorted boat configurations. The other two coordinated monodentate ligands are one water mol-ecule and two chloride ions with four cobalt(II) complexes in the unit cell. The asymmetric unit of the complex is comprised of half the pyridine ring and water mol-ecule with the CoII atom at the center of the pincer situated about a twofold axis. The Co-N, Co-O, and Co-Cl bond lengths are consistent with single bonds. In the crystal, the complex forms a three-centre bifurcated weak hydrogen-bonding inter-action with a chlorine ion, forming one inter-molecular inter-action with the pincer group and a water mol-ecule and a second intra-molecular inter-action with a C-H group within the pincer group. Crystal packing is also highlighted with C 2 2(6)>aa>a ring motifs, forming a three-dimensional supra-molecular network structure. While some stacking of the pyridine rings in the unit cell is observed, there are no relevant π-π inter-actions in the crystal packing. The 1H and 13C{1H} NMR spectra of the complex are consistent with a plane of symmetry being present. The electrospray mass spectrum, which was collected in positive ion mode, showed the loss of one water mol-ecule and one chloride ligand from the complex. In the future, we plan to screen this cobalt(II) complex for electrocatalysis reactivity.

2.
J Vis Exp ; (157)2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32250360

RESUMO

Chemical model complexes are prepared to represent the active site of an enzyme. In this protocol, a family of tridentate pincer ligand precursors (each possessing two sulfur and one nitrogen donor atom functionalities (SNS) and based on bis-imidazole or bis-triazole compounds) are metallated with CoCl2·6H2O to afford tridentate SNS pincer cobalt(II) complexes. Preparation of the cobalt(II) model complexes for liver alcohol dehydrogenase is facile. Based on a quick color change upon adding the CoCl2·6H2O to acetonitrile solution that contains the ligand precursor, the complex forms rapidly. Formation of the metal complex is complete after allowing the solution to reflux overnight. These cobalt(II) complexes serve as models for the zinc active site in liver alcohol dehydrogenase (LADH). The complexes are characterized using single crystal X-ray diffraction, electrospray mass spectrometry, ultra-violet visible spectroscopy, and elemental analysis. To accurately determine the structure of the complex, its single crystal structure must be determined. Single crystals of the complexes that are suitable for X-ray diffraction are then grown via slow vapor diffusion of diethyl ether into an acetonitrile solution that contains the cobalt(II) complex. For high quality crystals, recrystallization typically takes place over a 1 week period, or longer. The method can be applied to the preparation of other model coordination complexes and can be used in undergraduate teaching laboratories. Finally, it is believed that others may find this recrystallization method to obtain single crystals beneficial to their research.


Assuntos
Álcool Desidrogenase/química , Cobalto/química , Complexos de Coordenação/química , Fígado/enzimologia , Modelos Químicos , Cristalografia por Raios X , Imidazóis , Ligantes , Nitrogênio/química , Espectrometria de Massas por Ionização por Electrospray , Enxofre/química , Zinco/química
3.
Nat Chem Biol ; 15(2): 189-195, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30559426

RESUMO

Biological electron transfer is challenging to directly regulate using environmental conditions. To enable dynamic, protein-level control over energy flow in metabolic systems for synthetic biology and bioelectronics, we created ferredoxin logic gates that utilize transcriptional and post-translational inputs to control energy flow through a synthetic electron transfer pathway that is required for bacterial growth. These logic gates were created by subjecting a thermostable, plant-type ferredoxin to backbone fission and fusing the resulting fragments to a pair of proteins that self-associate, a pair of proteins whose association is stabilized by a small molecule, and to the termini of a ligand-binding domain. We show that the latter domain insertion design strategy yields an allosteric ferredoxin switch that acquires an oxygen-tolerant [2Fe-2S] cluster and can use different chemicals, including a therapeutic drug and an environmental pollutant, to control the production of a reduced metabolite in Escherichia coli and cell lysates.


Assuntos
Transporte de Elétrons/fisiologia , Metaloproteínas/fisiologia , Sequência de Aminoácidos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Transporte de Elétrons/efeitos dos fármacos , Elétrons , Escherichia coli/metabolismo , Ferredoxinas/fisiologia , Metaloproteínas/genética , Mutagênese Sítio-Dirigida/métodos , Processamento de Proteína Pós-Traducional/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...