Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 126(33): 5632-5646, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35951364

RESUMO

Polycyclic aromatic hydrocarbons are major species in astrophysical environments, and this motivates their study in samples of astrochemical interest such as meteorites and laboratory analogues of stardust. Molecular analyses of carbonaceous matter in these samples show a dominant peak at m/z = 202.078 corresponding to C16H10. Obtaining information on the associated isomeric structures is a challenge for the molecular analysis of samples available in very small quantities (mg or less). Here we show that coupling laser desorption ionization mass spectrometry with ion trapping opens up the possibility of unraveling isomers by activating ion fragmentation via collisions or photon absorption. We report the best criteria for differentiating isomers with comparable dissociation energies, namely pyrene, fluoranthene, and 9-ethynylphenanthrene, on the basis of the parent dissociation curve and the ratio of dehydrogenation channels. Photoabsorption schemes (multiple photon absorption in the visible range and single photon absorption at 10.5 eV) are more effective in differentiating these isomers than activation by low energy collisions. The impact of the activation scheme on the fragmentation kinetics and dehydrogenation pathways is discussed. By analyzing the 10.5 eV photodissociation measurements with a simple kinetic model, we were able to derive a branching ratio for the H and 2H/H2 loss channels of the parent ions. The results suggest a role in the formation of H2 for bay hydrogens that are present in both fluoranthene and 9-ethynylphenanthrene. In addition, we suggest for the latter the presence of a highly competitive 2H loss channel, possibly associated with the formation of a pentagonal ring.

2.
Proc Int Astron Union ; 15(Suppl 350): 388-389, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33072171

RESUMO

In cosmic environments, polycyclic aromatic hydrocarbons (PAHs) strongly interact with vacuum ultraviolet (VUV) photons emitted by young stars. Trapped PAH cations ranging in size from 30 to 48 carbon atoms were irradiated by tunable synchrotron light (DESIRS beamline at SOLEIL). Their ionization and dissociation cross sections were determined and compared with TD-DFT computed photoabsorption cross sections. Evidence for radiative cooling is reported.

3.
Astrophys J ; 843(1)2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28835724

RESUMO

We developed a new analytical experimental setup called AROMA (Astrochemistry Research of Organics with Molecular Analyzer) that combines laser desorption/ionization techniques with ion trap mass spectrometry. We report here on the ability of the apparatus to detect aromatic species in complex materials of astrophysical interests and characterize their structures. A limit of detection of 100 femto-grams has been achieved using pure polycyclic aromatic hydrocarbon (PAH) samples, which corresponds to 2x108 molecules in the case of coronene (C24H12). We detected the PAH distribution in the Murchison meteorite, which is made of a complex mixture of extraterrestrial organic compounds. In addition, collision induced dissociation experiments were performed on selected species detected in Murchison, which led to the first firm identification of pyrene and its methylated derivatives in this sample.

4.
Mol Astrophys ; 2: 12-17, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26942230

RESUMO

A gas-phase optical spectrum of a large polycyclic aromatic hydrocarbon (PAH) cation - C78H26+- in the 410-610 nm range is presented. This large all-benzenoid PAH should be large enough to be stable with respect to photodissociation in the harsh conditions prevailing in the interstellar medium (ISM). The spectrum is obtained via multi-photon dissociation (MPD) spectroscopy of cationic C78H26 stored in the Fourier Transform Ion Cyclotron Resonance (FT-ICR) cell using the radiation from a mid-band optical parametric oscillator (OPO) laser. The experimental spectrum shows two main absorption peaks at 431 nm and 516 nm, in good agreement with a theoretical spectrum computed via time-dependent density functional theory (TD-DFT). DFT calculations indicate that the equilibrium geometry, with the absolute minimum energy, is of lowered, nonplanar C2 symmetry instead of the more symmetric planar D2h symmetry that is usually the minimum for similar PAHs of smaller size. This kind of slightly broken symmetry could produce some of the fine structure observed in some diffuse interstellar bands (DIBs). It can also favor the folding of C78H26+ fragments and ultimately the formation of fullerenes. This study opens up the possibility to identify the most promising candidates for DIBs amongst large cationic PAHs.

5.
J Chem Phys ; 141(16): 164325, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25362317

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are key species encountered in a large variety of environments such as the Interstellar Medium (ISM) and in combustion media. Their UV spectroscopy and photodynamics in neutral and cationic forms are important to investigate in order to learn about their structure, formation mechanisms, and reactivity. Here, we report an experimental photoelectron-photoion coincidence study of a prototypical PAH molecule, coronene, and its small clusters, in a molecular beam using the vacuum ultraviolet (VUV) photons provided by the SOLEIL synchrotron facility. Mass-selected high resolution threshold photoelectron (TPES) and total ion yield spectra were obtained and analyzed in detail. Intense series of autoionizing resonances have been characterized as originating from the monomer, dimer, and trimer neutral species, which may be used as spectral fingerprints for their detection in the ISM by VUV absorption spectroscopy. Finally, a full description of the electronic structure of the monomer cation was made and discussed in detail in relation to previous spectroscopic optical absorption data. Tentative vibrational assignments in the near-threshold TPES spectrum of the monomer have been made with the support of a theoretical approach based on density functional theory.

6.
Phys Chem Chem Phys ; 7(5): 963-9, 2005 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-19791386

RESUMO

The structure of carbon dioxide aggregates is investigated by means of direct absorption IR specroscopy in the region of the antisymmetric stretching vibration v3. The (CO2)N particles are generated under dynamic (supersonic cooling in Laval nozzles) and static (collisional cooling cells) conditions over a broad mean size range (20 < N < 10(5)). The vibrational exciton approach is used to interpret the observed spectral features. The particles generated by supersonic cooling remain globular in shape even for the largest explored aggregate sizes (N approximately 10(5)), thus highlighting the absence of agglomeration between primary clusters under our jet conditions. This is in contrast to collisional cooling where the primary particles strongly agglomerate after a few seconds. The spectra for the larger particles (N > 10(4)) are well reproduced by the simulations if cuboctahedral or octahedral rather than spherical aggregate shapes are assumed.

7.
J Chem Phys ; 120(24): 11775-84, 2004 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-15268212

RESUMO

The present contribution investigates shape effects and surface effects in the infrared spectra of pure (NH(3)) and mixed (NH(3)-CO(2) and NH(3)-NH(2)D-NHD(2)-ND(3)) ammonia particles with sizes between about 1 and 50 nm. The particles investigated have been generated in a collisional cooling cell as aerosols at temperatures between 20 and 80 K. The contribution reveals that only the combination with a microscopic model leads to a comprehensive understanding of the various features observed in the experimental infrared spectra. As one of the major results, the corresponding exciton model explains why pronounced shape effects observed for pure particles only play a minor role in the case of mixed particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...