Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(1): e1011973, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38271470

RESUMO

Differential accumulation of the distinct genome segments is a common feature of viruses with segmented genomes. The reproducible and specific pattern of genome segment accumulation within the host is referred to as the "genome formula". There is speculation and some experimental support for a functional role of the genome formula by modulating gene expression through copy number variations. However, the mechanisms of genome formula regulation have not yet been identified. In this study, we investigated whether the genome formula of the octopartite nanovirus faba bean necrotic stunt virus (FBNSV) is regulated by processes acting at the individual segment vs. viral population levels. We used a leaf infiltration system to show that the two most accumulated genome segments of the FBNSV possess a greater intrinsic accumulation capacity in Vicia faba tissues than the other segments. Nevertheless, processes acting at the individual segment level are insufficient to generate the genome formula, suggesting the involvement of additional mechanisms acting at the supra-segment level. Indeed, the absence of segments with important functions during systemic infection strongly modifies the relative frequency of the others, indicating that the genome formula is a property of the segment group. Together, these results demonstrate that the FBNSV genome formula is shaped by a complex process acting at both the individual segment and the segment group levels.


Assuntos
Nanovirus , Vicia faba , Variações do Número de Cópias de DNA , Doenças das Plantas , Vicia faba/genética , Nanovirus/genética , Folhas de Planta/genética , Genoma Viral
2.
mBio ; 14(5): e0169223, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37695133

RESUMO

The replication of members of the two circular single-stranded DNA (ssDNA) virus families Geminiviridae and Nanoviridae, the only ssDNA viruses infecting plants, is believed to be processed by rolling-circle replication (RCR) and recombination-dependent replication (RDR) mechanisms. RCR is a ubiquitous replication mode for circular ssDNA viruses and involves a virus-encoded Replication-associated protein (Rep) which fulfills multiple functions in the replication mechanism. Two key genomic elements have been identified for RCR in Geminiviridae and Nanoviridae: (i) short iterative sequences called iterons which determine the specific recognition of the viral DNA by the Rep and (ii) a sequence enabling the formation of a stem-loop structure which contains a conserved motif and constitutes the origin of replication. In addition, studies in Geminiviridae provided evidence for a second replication mode, RDR, which has also been documented in some double-stranded DNA viruses. Here, we provide a synthesis of the current understanding of the two presumed replication modes of Geminiviridae and Nanoviridae, and we identify knowledge gaps and discuss the possibility that these replication mechanisms could regulate viral gene expression through modulation of gene copy number.


Assuntos
DNA de Cadeia Simples , Geminiviridae , DNA de Cadeia Simples/genética , Replicação do DNA , Geminiviridae/genética , Geminiviridae/metabolismo , DNA Viral/metabolismo , Proteínas Virais/metabolismo , Regulação Viral da Expressão Gênica
3.
PLoS Pathog ; 19(1): e1011086, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36622854

RESUMO

Nanoviruses are plant multipartite viruses with a genome composed of six to eight circular single-stranded DNA segments. The distinct genome segments are encapsidated individually in icosahedral particles that measure ≈18 nm in diameter. Recent studies on the model species Faba bean necrotic stunt virus (FBNSV) revealed that complete sets of genomic segments rarely occur in infected plant cells and that the function encoded by a given viral segment can complement the others across neighbouring cells, presumably by translocation of the gene products through unknown molecular processes. This allows the viral genome to replicate, assemble into viral particles and infect anew, even with the distinct genome segments scattered in different cells. Here, we question the form under which the FBNSV genetic material propagates long distance within the vasculature of host plants and, in particular, whether viral particle assembly is required. Using structure-guided mutagenesis based on a 3.2 Å resolution cryogenic-electron-microscopy reconstruction of the FBNSV particles, we demonstrate that specific site-directed mutations preventing capsid formation systematically suppress FBNSV long-distance movement, and thus systemic infection of host plants, despite positive detection of the mutated coat protein when the corresponding segment is agroinfiltrated into plant leaves. These results strongly suggest that the viral genome does not propagate within the plant vascular system under the form of uncoated DNA molecules or DNA:coat-protein complexes, but rather moves long distance as assembled viral particles.


Assuntos
Nanovirus , Vicia faba , Nanovirus/genética , Proteínas do Capsídeo/genética , Vicia faba/genética , DNA Viral/genética , Vírion/genética , Genoma Viral , Mutagênese
4.
New Phytol ; 237(3): 900-913, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36229931

RESUMO

Viral diseases are a major limitation for crop production, and their control is crucial for sustainable food supply. We investigated by a combination of functional genetics and experimental evolution the resistance of rice to the rice yellow mottle virus (RYMV), which is among the most devastating rice pathogens in Africa, and the mechanisms underlying the extremely fast adaptation of the virus to its host. We found that the RYMV3 gene that protects rice against the virus codes for a nucleotide-binding and leucine-rich repeat domain immune receptor (NLRs) from the Mla-like clade of NLRs. RYMV3 detects the virus by forming a recognition complex with the viral coat protein (CP). The virus escapes efficiently from detection by mutations in its CP, some of which interfere with the formation of the recognition complex. This study establishes that NLRs also confer in monocotyledonous plants immunity to viruses, and reveals an unexpected functional diversity for NLRs of the Mla clade that were previously only known as fungal disease resistance proteins. In addition, it provides precise insight into the mechanisms by which viruses adapt to plant immunity and gives important knowledge for the development of sustainable resistance against viral diseases of cereals.


Assuntos
Oryza , Vírus de RNA , Viroses , Leucina , Vírus de RNA/metabolismo , Nucleotídeos , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas NLR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...