Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709891

RESUMO

Nonsense-mediated mRNA decay (NMD) is a conserved co-translational mRNA surveillance and turnover pathway across eukaryotes. NMD has a central role in degrading defective mRNAs and also regulates the stability of a significant portion of the transcriptome. The pathway is organized around UPF1, an RNA helicase that can interact with several NMD-specific factors. In human cells, degradation of the targeted mRNAs begins with a cleavage event that requires the recruitment of the SMG6 endonuclease to UPF1. Previous studies have identified functional links between SMG6 and UPF1, but the underlying molecular mechanisms have remained elusive. Here, we used mass spectrometry, structural biology and biochemical approaches to identify and characterize a conserved short linear motif in SMG6 that interacts with the cysteine/histidine-rich (CH) domain of UPF1. Unexpectedly, we found that the UPF1-SMG6 interaction is precluded when the UPF1 CH domain is engaged with another NMD factor, UPF2. Based on cryo-EM data, we propose that the formation of distinct SMG6-containing and UPF2-containing NMD complexes may be dictated by different conformational states connected to the RNA-binding status of UPF1. Our findings rationalize a key event in metazoan NMD and advance our understanding of mechanisms regulating activity and guiding substrate recognition by the SMG6 endonuclease.

2.
Genes Dev ; 37(11-12): 505-517, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37399331

RESUMO

Messenger RNAs (mRNAs) are at the center of the central dogma of molecular biology. In eukaryotic cells, these long ribonucleic acid polymers do not exist as naked transcripts; rather, they associate with mRNA-binding proteins to form messenger ribonucleoprotein (mRNP) complexes. Recently, global proteomic and transcriptomic studies have provided comprehensive inventories of mRNP components. However, knowledge of the molecular features of distinct mRNP populations has remained elusive. We purified endogenous nuclear mRNPs from Saccharomyces cerevisiae by harnessing the mRNP biogenesis factors THO and Sub2 in biochemical procedures optimized to preserve the integrity of these transient ribonucleoprotein assemblies. We found that these mRNPs are compact particles that contain multiple copies of Yra1, an essential protein with RNA-annealing properties. To investigate their molecular and architectural organization, we used a combination of proteomics, RNA sequencing, cryo-electron microscopy, cross-linking mass spectrometry, structural models, and biochemical assays. Our findings indicate that yeast nuclear mRNPs are packaged around an intricate network of interconnected proteins capable of promoting RNA-RNA interactions via their positively charged intrinsically disordered regions. The evolutionary conservation of the major mRNA-packaging factor (yeast Yra1 and Aly/REF in metazoans) points toward a general paradigm governing nuclear mRNP packaging.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Microscopia Crioeletrônica , Proteômica , Proteínas de Saccharomyces cerevisiae/metabolismo , Ribonucleoproteínas/genética , RNA Mensageiro/metabolismo
3.
Mol Cell ; 82(13): 2505-2518.e7, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35688157

RESUMO

In mammalian cells, spurious transcription results in a vast repertoire of unproductive non-coding RNAs, whose deleterious accumulation is prevented by rapid decay. The nuclear exosome targeting (NEXT) complex plays a central role in directing non-functional transcripts to exosome-mediated degradation, but the structural and molecular mechanisms remain enigmatic. Here, we elucidated the architecture of the human NEXT complex, showing that it exists as a dimer of MTR4-ZCCHC8-RBM7 heterotrimers. Dimerization preconfigures the major MTR4-binding region of ZCCHC8 and arranges the two MTR4 helicases opposite to each other, with each protomer able to function on many types of RNAs. In the inactive state of the complex, the 3' end of an RNA substrate is enclosed in the MTR4 helicase channel by a ZCCHC8 C-terminal gatekeeping domain. The architecture of a NEXT-exosome assembly points to the molecular and regulatory mechanisms with which the NEXT complex guides RNA substrates to the exosome.


Assuntos
Exossomos , RNA , Núcleo Celular/genética , Núcleo Celular/metabolismo , RNA Helicases DEAD-box/metabolismo , DNA Helicases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/genética , Exossomos/metabolismo , Humanos , Ligação Proteica , RNA/genética , RNA/metabolismo , RNA Helicases/metabolismo , Estabilidade de RNA/genética
4.
Mol Cell ; 82(4): 756-769.e8, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35120588

RESUMO

The superkiller (SKI) complex is the cytoplasmic co-factor and regulator of the RNA-degrading exosome. In human cells, the SKI complex functions mainly in co-translational surveillance-decay pathways, and its malfunction is linked to a severe congenital disorder, the trichohepatoenteric syndrome. To obtain insights into the molecular mechanisms regulating the human SKI (hSKI) complex, we structurally characterized several of its functional states in the context of 80S ribosomes and substrate RNA. In a prehydrolytic ATP form, the hSKI complex exhibits a closed conformation with an inherent gating system that effectively traps the 80S-bound RNA into the hSKI2 helicase subunit. When active, hSKI switches to an open conformation in which the gating is released and the RNA 3' end exits the helicase. The emerging picture is that the gatekeeping mechanism and architectural remodeling of hSKI underpin a regulated RNA channeling system that is mechanistically conserved among the cytoplasmic and nuclear helicase-exosome complexes.


Assuntos
Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , RNA Helicases/metabolismo , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA/metabolismo , Subunidades Ribossômicas/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Exorribonucleases/genética , Exorribonucleases/ultraestrutura , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/ultraestrutura , Células HEK293 , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , RNA/genética , RNA/ultraestrutura , RNA Helicases/genética , RNA Helicases/ultraestrutura , Subunidades Ribossômicas/genética , Subunidades Ribossômicas/ultraestrutura , Relação Estrutura-Atividade
5.
Elife ; 102021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34698635

RESUMO

The PI3K-related kinase (PIKK) SMG1 monitors the progression of metazoan nonsense-mediated mRNA decay (NMD) by phosphorylating the RNA helicase UPF1. Previous work has shown that the activity of SMG1 is impaired by small molecule inhibitors, is reduced by the SMG1 interactors SMG8 and SMG9, and is downregulated by the so-called SMG1 insertion domain. However, the molecular basis for this complex regulatory network has remained elusive. Here, we present cryo-electron microscopy reconstructions of human SMG1-9 and SMG1-8-9 complexes bound to either a SMG1 inhibitor or a non-hydrolyzable ATP analog at overall resolutions ranging from 2.8 to 3.6 Å. These structures reveal the basis with which a small molecule inhibitor preferentially targets SMG1 over other PIKKs. By comparison with our previously reported substrate-bound structure (Langer et al.,2020), we show that the SMG1 insertion domain can exert an autoinhibitory function by directly blocking the substrate-binding path as well as overall access to the SMG1 kinase active site. Together with biochemical analysis, our data indicate that SMG1 autoinhibition is stabilized by the presence of SMG8. Our results explain the specific inhibition of SMG1 by an ATP-competitive small molecule, provide insights into regulation of its kinase activity within the NMD pathway, and expand the understanding of PIKK regulatory mechanisms in general.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , RNA Helicases/metabolismo , Transativadores/genética , Transativadores/metabolismo
6.
Elife ; 92020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33191913

RESUMO

The yeast THO complex is recruited to active genes and interacts with the RNA-dependent ATPase Sub2 to facilitate the formation of mature export-competent messenger ribonucleoprotein particles and to prevent the co-transcriptional formation of RNA:DNA-hybrid-containing structures. How THO-containing complexes function at the mechanistic level is unclear. Here, we elucidated a 3.4 Å resolution structure of Saccharomyces cerevisiae THO-Sub2 by cryo-electron microscopy. THO subunits Tho2 and Hpr1 intertwine to form a platform that is bound by Mft1, Thp2, and Tex1. The resulting complex homodimerizes in an asymmetric fashion, with a Sub2 molecule attached to each protomer. The homodimerization interfaces serve as a fulcrum for a seesaw-like movement concomitant with conformational changes of the Sub2 ATPase. The overall structural architecture and topology suggest the molecular mechanisms of nucleic acid remodeling during mRNA biogenesis.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição/química , Adenosina Trifosfatases/metabolismo , Microscopia Crioeletrônica , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Conformação Proteica , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
7.
Elife ; 92020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32469312

RESUMO

PI3K-related kinases (PIKKs) are large Serine/Threonine (Ser/Thr)-protein kinases central to the regulation of many fundamental cellular processes. PIKK family member SMG1 orchestrates progression of an RNA quality control pathway, termed nonsense-mediated mRNA decay (NMD), by phosphorylating the NMD factor UPF1. Phosphorylation of UPF1 occurs in its unstructured N- and C-terminal regions at Serine/Threonine-Glutamine (SQ) motifs. How SMG1 and other PIKKs specifically recognize SQ motifs has remained unclear. Here, we present a cryo-electron microscopy (cryo-EM) reconstruction of a human SMG1-8-9 kinase complex bound to a UPF1 phosphorylation site at an overall resolution of 2.9 Å. This structure provides the first snapshot of a human PIKK with a substrate-bound active site. Together with biochemical assays, it rationalizes how SMG1 and perhaps other PIKKs specifically phosphorylate Ser/Thr-containing motifs with a glutamine residue at position +1 and a hydrophobic residue at position -1, thus elucidating the molecular basis for phosphorylation site recognition.


The instructions for producing proteins in the cell are copied from DNA to molecules known as messenger RNA. If there is an error in the messenger RNA, this causes incorrect proteins to be produced that could potentially kill the cell. Cells have a special detection system that spots and removes any messenger RNA molecules that contain errors, which would result in the protein produced being too short. For this error-detecting system to work, a protein called UPF1 must be modified by an enzyme called SMG1. This enzyme only binds to and modifies the UPF1 protein at sites that contain a specific pattern of amino acids ­ the building blocks that proteins are made from. However, it remained unclear how SMG1 recognizes this pattern and interacts with UPF1. Now, Langer et al. have used a technique known as cryo-electron microscopy to image human SMG1 bound to a segment of UPF1. These images were then used to generate the three-dimensional structure of how the two proteins interact. This high-resolution structure showed that protein building blocks called leucine, serine and glutamine are the recognized pattern of amino acids. To further understand the role of the amino acids, Langer et al. replaced them one-by-one with different amino acids to see how each affected the interaction between the two proteins. This revealed that SMG1 preferred leucine at the beginning of the recognized pattern and glutamine at the end when binding to UPF1. SMG1 is member of an important group of enzymes that are involved in various error detecting systems. This is the first time that a protein from this family has been imaged together with its target and these findings may also be relevant to other enzymes in this family. Furthermore, the approach used to determine the structure of SMG1 and the structural information itself could also be used in drug design to improve the accuracy with which drugs identify their targets.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Motivos de Aminoácidos , Microscopia Crioeletrônica , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Moleculares , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , RNA Helicases/genética , RNA Helicases/metabolismo , Transativadores/genética , Transativadores/metabolismo
8.
Nat Struct Mol Biol ; 26(12): 1089-1093, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31792449

RESUMO

We report the 3.45-Å resolution cryo-EM structure of human SMG1-SMG8-SMG9, a phosphatidylinositol-3-kinase (PI(3)K)-related protein kinase (PIKK) complex central to messenger RNA surveillance. Structural and MS analyses reveal the presence of inositol hexaphosphate (InsP6) in the SMG1 kinase. We show that the InsP6-binding site is conserved in mammalian target of rapamycin (mTOR) and potentially other PIKK members, and that it is required for optimal in vitro phosphorylation of both SMG1 and mTOR substrates.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ácido Fítico/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Modelos Moleculares , Ácido Fítico/química , Ligação Proteica , Conformação Proteica , Proteínas Quinases/química , Proteínas Quinases/ultraestrutura , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/ultraestrutura , Estabilidade de RNA
9.
Artigo em Inglês | MEDLINE | ID: mdl-32493762

RESUMO

The RNA exosome was originally discovered in yeast as an RNA-processing complex required for the maturation of 5.8S ribosomal RNA (rRNA), one of the constituents of the large ribosomal subunit. The exosome is now known in eukaryotes as the major 3'-5' RNA degradation machine involved in numerous processing, turnover, and surveillance pathways, both in the nucleus and the cytoplasm. Yet its role in maturing the 5.8S rRNA in the pre-60S ribosomal particle remains probably the most intricate and emblematic among its functions, as it involves all the RNA unwinding, degradation, and trimming activities embedded in this macromolecular complex. Here, we propose a comprehensive mechanistic model, based on current biochemical and structural data, explaining the dual functions of the nuclear exosome-the constructive versus the destructive mode.

10.
Elife ; 72018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30047866

RESUMO

The nuclear RNA exosome complex mediates the processing of structured RNAs and the decay of aberrant non-coding RNAs, an important function particularly in human cells. Most mechanistic studies to date have focused on the yeast system. Here, we reconstituted and studied the properties of a recombinant 14-subunit human nuclear exosome complex. In biochemical assays, the human exosome embeds a longer RNA channel than its yeast counterpart. The 3.8 Å resolution cryo-EM structure of the core complex bound to a single-stranded RNA reveals that the RNA channel path is formed by two distinct features of the hDIS3 exoribonuclease: an open conformation and a domain organization more similar to bacterial RNase II than to yeast Rrp44. The cryo-EM structure of the holo-complex shows how obligate nuclear cofactors position the hMTR4 helicase at the entrance of the core complex, suggesting a striking structural conservation from lower to higher eukaryotes.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/química , Exossomos/química , RNA Helicases/química , Homologia Estrutural de Proteína , Núcleo Celular/química , Cristalografia por Raios X , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Exossomos/genética , Humanos , Ligação Proteica , Conformação Proteica , Subunidades Proteicas/química , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
11.
Nucleic Acids Res ; 46(5): 2648-2659, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29378013

RESUMO

The RNA helicase UPF1 is a key component of the nonsense mediated mRNA decay (NMD) pathway. Previous X-ray crystal structures of UPF1 elucidated the molecular mechanisms of its catalytic activity and regulation. In this study, we examine features of the UPF1 core and identify a structural element that adopts different conformations in the various nucleotide- and RNA-bound states of UPF1. We demonstrate, using biochemical and single molecule assays, that this structural element modulates UPF1 catalytic activity and thereby refer to it as the regulatory loop. Interestingly, there are two alternatively spliced isoforms of UPF1 in mammals which differ only in the lengths of their regulatory loops. The loop in isoform 1 (UPF11) is 11 residues longer than that of isoform 2. We find that this small insertion in UPF11 leads to a two-fold increase in its translocation and ATPase activities. To determine the mechanistic basis of this differential catalytic activity, we have determined the X-ray crystal structure of the helicase core of UPF11 in its apo-state. Our results point toward a novel mechanism of regulation of RNA helicases, wherein alternative splicing leads to subtle structural rearrangements within the protein that are critical to modulate enzyme movements and catalytic activity.


Assuntos
RNA Helicases/química , Transativadores/química , Biocatálise , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , RNA/metabolismo , RNA Helicases/metabolismo , Transativadores/metabolismo
12.
Cell Rep ; 20(10): 2279-2286, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28877463

RESUMO

The RNA-degrading exosome mediates the processing and decay of many cellular transcripts. In the yeast nucleus, the ubiquitous 10-subunit exosome core complex (Exo-9-Rrp44) functions with four conserved cofactors (Rrp6, Rrp47, Mtr4, and Mpp6). Biochemical and structural studies to date have shed insights into the mechanisms of the exosome core and its nuclear cofactors, with the exception of Mpp6. We report the 3.2-Å resolution crystal structure of a S. cerevisiae Exo-9-Mpp6 complex, revealing how linear motifs in the Mpp6 middle domain bind Rrp40 via evolutionary conserved residues. In particular, Mpp6 binds near a tryptophan residue of Rrp40 that is mutated in human patients suffering from pontocerebellar hypoplasia. Using biochemical assays, we show that Mpp6 is required for the ability of Mtr4 to extend the trajectory of an RNA entering the exosome core, suggesting that it promotes the channeling of substrates from the nuclear helicase to the processive RNase.


Assuntos
Núcleo Celular/metabolismo , Cristalografia por Raios X/métodos , Exossomos/metabolismo , Proteínas de Membrana/metabolismo , RNA Helicases/metabolismo , RNA/metabolismo , Humanos , Ribossomos/metabolismo
13.
EMBO J ; 36(11): 1590-1604, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28408439

RESUMO

The superfamily 1B (SF1B) helicase Sen1 is an essential protein that plays a key role in the termination of non-coding transcription in yeast. Here, we identified the ~90 kDa helicase core of Saccharomyces cerevisiae Sen1 as sufficient for transcription termination in vitro and determined the corresponding structure at 1.8 Å resolution. In addition to the catalytic and auxiliary subdomains characteristic of the SF1B family, Sen1 has a distinct and evolutionarily conserved structural feature that "braces" the helicase core. Comparative structural analyses indicate that the "brace" is essential in shaping a favorable conformation for RNA binding and unwinding. We also show that subdomain 1C (the "prong") is an essential element for 5'-3' unwinding and for Sen1-mediated transcription termination in vitro Finally, yeast Sen1 mutant proteins mimicking the disease forms of the human orthologue, senataxin, show lower capacity of RNA unwinding and impairment of transcription termination in vitro The combined biochemical and structural data thus provide a molecular model for the specificity of Sen1 in transcription termination and more generally for the unwinding mechanism of 5'-3' helicases.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , Regulação Fúngica da Expressão Gênica , Dobramento de RNA , RNA Helicases/química , RNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Terminação da Transcrição Genética , Cristalografia por Raios X , DNA Helicases/genética , Análise Mutacional de DNA , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , RNA Helicases/genética , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
14.
RNA ; 22(8): 1139-45, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27288313

RESUMO

Cytoplasmic polyadenylation drives the translational activation of specific mRNAs in early metazoan development and is performed by distinct complexes that share the same catalytic poly(A)-polymerase subunit, GLD-2. The activity and specificity of GLD-2 depend on its binding partners. In Caenorhabditis elegans, GLD-2 promotes spermatogenesis when bound to GLD-3 and oogenesis when bound to RNP-8. GLD-3 and RNP-8 antagonize each other and compete for GLD-2 binding. Following up on our previous mechanistic studies of GLD-2-GLD-3, we report here the 2.5 Å resolution structure and biochemical characterization of a GLD-2-RNP-8 core complex. In the structure, RNP-8 embraces the poly(A)-polymerase, docking onto several conserved hydrophobic hotspots present on the GLD-2 surface. RNP-8 stabilizes GLD-2 and indirectly stimulates polyadenylation. RNP-8 has a different amino-acid sequence and structure as compared to GLD-3. Yet, it binds the same surfaces of GLD-2 by forming alternative interactions, rationalizing the remarkable versatility of GLD-2 complexes.


Assuntos
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/enzimologia , Polinucleotídeo Adenililtransferase/metabolismo , Proteínas de Ligação a RNA/química , Ribonucleoproteínas/química , Animais , Proteínas de Caenorhabditis elegans/fisiologia , Cristalografia por Raios X , Polinucleotídeo Adenililtransferase/química , Polinucleotídeo Adenililtransferase/fisiologia , Conformação Proteica , Proteínas de Ligação a RNA/fisiologia , Ribonucleoproteínas/fisiologia
15.
Mol Cell ; 60(3): 487-99, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26545078

RESUMO

The MLE helicase remodels the roX lncRNAs, enabling the lncRNA-mediated assembly of the Drosophila dosage compensation complex. We identified a stable MLE core comprising the DExH helicase module and two auxiliary domains: a dsRBD and an OB-like fold. MLEcore is an unusual DExH helicase that can unwind blunt-ended RNA duplexes and has specificity for uridine nucleotides. We determined the 2.1 Å resolution structure of MLEcore bound to a U10 RNA and ADP-AlF4. The OB-like and dsRBD folds bind the DExH module and contribute to form the entrance of the helicase channel. Four uridine nucleotides engage in base-specific interactions, rationalizing the conservation of uridine-rich sequences in critical roX substrates. roX2 binding is orchestrated by MLE's auxiliary domains, which is prerequisite for MLE localization to the male X chromosome. The structure visualizes a transition-state mimic of the reaction and suggests how eukaryotic DEAH/RHA helicases couple ATP hydrolysis to RNA translocation.


Assuntos
Trifosfato de Adenosina/química , Proteínas Cromossômicas não Histona/química , DNA Helicases/química , Proteínas de Drosophila/química , RNA Helicases/química , RNA/química , Fatores de Transcrição/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Masculino , Estrutura Terciária de Proteína , RNA/genética , RNA/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromossomo X/química , Cromossomo X/genética , Cromossomo X/metabolismo
16.
Proc Natl Acad Sci U S A ; 112(28): 8614-9, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26124149

RESUMO

The Caenorhabditis elegans germ-line development defective (GLD)-2-GLD-3 complex up-regulates the expression of genes required for meiotic progression. GLD-2-GLD-3 acts by extending the short poly(A) tail of germ-line-specific mRNAs, switching them from a dormant state into a translationally active state. GLD-2 is a cytoplasmic noncanonical poly(A) polymerase that lacks the RNA-binding domain typical of the canonical nuclear poly(A)-polymerase Pap1. The activity of C. elegans GLD-2 in vivo and in vitro depends on its association with the multi-K homology (KH) domain-containing protein, GLD-3, a homolog of Bicaudal-C. We have identified a minimal polyadenylation complex that includes the conserved nucleotidyl-transferase core of GLD-2 and the N-terminal domain of GLD-3, and determined its structure at 2.3-Å resolution. The structure shows that the N-terminal domain of GLD-3 does not fold into the predicted KH domain but wraps around the catalytic domain of GLD-2. The picture that emerges from the structural and biochemical data are that GLD-3 activates GLD-2 both indirectly by stabilizing the enzyme and directly by contributing positively charged residues near the RNA-binding cleft. The RNA-binding cleft of GLD-2 has distinct structural features compared with the poly(A)-polymerases Pap1 and Trf4. Consistently, GLD-2 has distinct biochemical properties: It displays unusual specificity in vitro for single-stranded RNAs with at least one adenosine at the 3' end. GLD-2 thus appears to have evolved specialized nucleotidyl-transferase properties that match the 3' end features of dormant cytoplasmic mRNAs.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Citoplasma/enzimologia , Polinucleotídeo Adenililtransferase/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas de Caenorhabditis elegans/química , Cristalografia por Raios X , Modelos Moleculares , Proteínas Associadas a Pancreatite , Polinucleotídeo Adenililtransferase/química , Conformação Proteica , Proteínas de Ligação a RNA/química
17.
Mol Cell ; 56(1): 43-54, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25280103

RESUMO

The Cmr complex is an RNA-guided endonuclease that cleaves foreign RNA targets as part of the CRISPR prokaryotic defense system. We investigated the molecular architecture of the P. furiosus Cmr complex using an integrative structural biology approach. We determined crystal structures of P. furiosus Cmr1, Cmr2, Cmr4, and Cmr6 and combined them with known structural information to interpret the cryo-EM map of the complex. To support structure determination, we obtained residue-specific interaction data using protein crosslinking and mass spectrometry. The resulting pseudoatomic model reveals how the superhelical backbone of the complex is defined by the polymerizing principles of Cmr4 and Cmr5 and how it is capped at the extremities by proteins of similar folds. The inner surface of the superhelix exposes conserved residues of Cmr4 that we show are required for target-cleavage activity. The structural and biochemical data thus identify Cmr4 as the conserved endoribonuclease of the Cmr complex.


Assuntos
Proteínas Arqueais/química , Pyrococcus furiosus/genética , Proteínas Arqueais/fisiologia , Sítios de Ligação , Cristalografia por Raios X , Espectrometria de Massas , Modelos Moleculares , Estrutura Terciária de Proteína , Interferência de RNA , Relação Estrutura-Atividade
18.
Mol Cell ; 55(6): 856-867, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25175027

RESUMO

The TRAMP complex is involved in the nuclear surveillance and turnover of noncoding RNAs and intergenic transcripts. TRAMP is associated with the nuclear exosome and consists of a poly(A)polymerase subcomplex (Trf4-Air2) and a helicase (Mtr4). We found that N-terminal low-complexity regions of Trf4 and Air2 bind Mtr4 in a cooperative manner. The 2.4 Å resolution crystal structure of the corresponding ternary complex reveals how Trf4 and Air2 wrap around the DExH core of the helicase. Structure-based mutations on the DExH core impair binding to Trf4 and Air2, and also to Trf5 and Air1. The combination of structural, biochemical, and biophysical data suggests that the poly(A)polymerase core of Trf4-Air2 is positioned below the base of the helicase, where the unwound 3' end of an RNA substrate is expected to emerge. The results reveal conceptual similarities between the two major regulators of the exosome, the nuclear TRAMP and cytoplasmic Ski complexes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , RNA Helicases/química , RNA Helicases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Domínio Catalítico , Núcleo Celular/metabolismo , Cristalografia por Raios X , Citoplasma/metabolismo , DNA Polimerase Dirigida por DNA/genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Quaternária de Proteína , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Helicases/genética , Saccharomyces cerevisiae/citologia
19.
Nucleic Acids Res ; 42(14): 9447-60, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25013172

RESUMO

Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance pathway that recognizes mRNAs with premature stop codons and targets them for rapid degradation. Evidence from previous studies has converged on UPF1 as the central NMD factor. In human cells, the SMG1 kinase phosphorylates UPF1 at the N-terminal and C-terminal tails, in turn allowing the recruitment of the NMD factors SMG5, SMG6 and SMG7. To understand the molecular mechanisms, we recapitulated these steps of NMD in vitro using purified components. We find that a short C-terminal segment of phosphorylated UPF1 containing the last two Ser-Gln motifs is recognized by the heterodimer of SMG5 and SMG7 14-3-3-like proteins. In contrast, the SMG6 14-3-3-like domain is a monomer. The crystal structure indicates that the phosphoserine binding site of the SMG6 14-3-3-like domain is similar to that of SMG5 and can mediate a weak phospho-dependent interaction with UPF1. The dominant SMG6-UPF1 interaction is mediated by a low-complexity region bordering the 14-3-3-like domain of SMG6 and by the helicase domain and C-terminal tail of UPF1. This interaction is phosphorylation independent. Our study demonstrates that SMG5-SMG7 and SMG6 exhibit different and non-overlapping modes of UPF1 recognition, thus pointing at distinguished roles in integrating the complex NMD interaction network.


Assuntos
Proteínas de Transporte/metabolismo , RNA Helicases/metabolismo , Telomerase/metabolismo , Transativadores/metabolismo , Proteínas 14-3-3/química , Células HEK293 , Humanos , Modelos Moleculares , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Helicases/química , Telomerase/química , Transativadores/química
20.
Nat Struct Mol Biol ; 21(7): 591-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24880344

RESUMO

Pan2-Pan3 is a conserved complex involved in the shortening of mRNA poly(A) tails, the initial step in eukaryotic mRNA turnover. We show that recombinant Saccharomyces cerevisiae Pan2-Pan3 can deadenylate RNAs in vitro without needing the poly(A)-binding protein Pab1. The crystal structure of an active ~200-kDa core complex reveals that Pan2 and Pan3 interact with an unusual 1:2 stoichiometry imparted by the asymmetric nature of the Pan3 homodimer. An extended region of Pan2 wraps around Pan3 and provides a major anchoring point for complex assembly. A Pan2 module formed by the pseudoubiquitin-hydrolase and RNase domains latches onto the Pan3 pseudokinase with intertwined interactions that orient the deadenylase active site toward the A-binding site of the interacting Pan3. The molecular architecture of Pan2-Pan3 suggests how the nuclease and its pseudokinase regulator act in synergy to promote deadenylation.


Assuntos
Exorribonucleases/química , Proteínas de Saccharomyces cerevisiae/química , Sítios de Ligação , Cristalografia por Raios X , Exorribonucleases/metabolismo , Exorribonucleases/fisiologia , Modelos Biológicos , Proteínas de Ligação a Poli(A)/fisiologia , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...