Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 21(9): 1137-1156, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34534003

RESUMO

N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA), mixed with the solvent N,N-dimethylformamide (DMF), is used as a derivatizing reagent by the Sample Analysis at Mars (SAM) experiment onboard NASA's Curiosity rover and will soon be utilized by the Mars Organic Molecule Analyzer experiment onboard the ESA/Roscosmos Rosalind Franklin rover. The pyrolysis products of MTBSTFA, DMF, and the MTBSTFA/DMF mixtures, obtained at different temperatures, were analyzed. Two different pyrolysis modes were studied, flash pyrolysis and ramp pyrolysis (35°C/min), to evaluate the potential influence of the sample heating speed on the production of products in space chromatographs. The effect of the presence of calcium perchlorate on the pyrolysis products of MTBSTFA/DMF was also studied to ascertain the potential effect of perchlorate species known to be present at the martian surface. The results show that MTBSTFA/DMF derivatization should be applied below 300°C when using flash pyrolysis, as numerous products of MTBSTFA/DMF were formed at high pyrolysis temperatures. However, when an SAM-like ramp pyrolysis was applied, the final pyrolysis temperature did not appear to influence the degradation products of MTBSTFA/DMF. All products of MTBSTFA/DMF pyrolysis are listed in this article, providing a major database of products for the analysis of martian analog samples, meteorites, and the in situ analysis of martian rocks and soils. In addition, the presence of calcium perchlorate does not show any obvious effects on the pyrolysis of MTBSTFA/DMF: Only chloromethane and TBDMS-Cl (chloro-tertbutyldimethylsilane) were detected, whereas chlorobenzene and other chlorine-bearing compounds were not detected. However, other chlorine-bearing compounds were detected after pyrolysis of the Murchison meteorite in the presence of calcium perchlorate. This result reinforces previous suggestions that chloride-bearing compounds could be reaction products of martian samples and perchlorate.


Assuntos
Meio Ambiente Extraterreno , Marte , Cálcio , Dimetilformamida , Cromatografia Gasosa-Espectrometria de Massas , Percloratos
2.
Astrobiology ; 21(3): 279-297, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33306917

RESUMO

The Mars Organic Molecule Analyzer (MOMA) and Sample Analysis at Mars (SAM) instruments onboard the Exomars 2022 and Mars Science Laboratory rovers, respectively, are capable of organic matter detection and differentiating potentially biogenic from abiotic organics in martian samples. To identify organics, both these instruments utilize pyrolysis-gas chromatography coupled to mass spectrometry, and the thermochemolysis agent tetramethylammonium hydroxide (TMAH) is also used to increase organic volatility. However, the reactivity and efficiency of TMAH thermochemolysis are affected by the presence of calcium perchlorate on the martian surface. In this study, we determined the products of TMAH pyrolysis in the presence and absence of calcium perchlorate at different heating rates (flash pyrolysis and SAM-like ramp pyrolysis with a 35°C·min-1 heating rate). The decomposition mechanism of TMAH pyrolysis in the presence of calcium perchlorate was studied by using stepped pyrolysis. Moreover, the effect of calcium perchlorate (at Mars-relevant concentrations) on the recovery rate of fatty acids with TMAH thermochemolysis was studied. Results demonstrate that flash pyrolysis yields more diversity and greater abundances of TMAH thermochemolysis products than does the SAM-like ramp pyrolysis method. There is no obvious effect of calcium perchlorate on TMAH degradation when the [ClO4-] is lower than 10 weight percent (wt %). Most importantly, the presence of calcium perchlorate does not significantly impact the recovery rate of fatty acids with TMAH thermochemolysis under laboratory conditions, which is promising for the detection of fatty acids via TMAH thermochemolysis with the SAM and MOMA instruments on Mars.


Assuntos
Marte , Percloratos , Cálcio , Meio Ambiente Extraterreno , Cromatografia Gasosa-Espectrometria de Massas , Compostos de Amônio Quaternário
3.
Faraday Discuss ; 147: 495-508; discussion 527-52, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21302562

RESUMO

HCN polymers are complex organic solids resulting from the polymerization of hydrogen cyanide (HCN) molecules. They have been suspected to contribute to the refractory carbonaceous component of comets as well as the distributed CN sources in cometary atmospheres. Titan's tholins are also organic compounds produced in a laboratory setting but result from the complex chemistry between N2 and CH4 induced by UV radiation or electric discharges. Some of these compounds have optical properties in the visible range fairly similar to those of Titan's aerosols or those of the reddish surfaces of many icy satellites and small bodies. It has been proposed that HCN polymers are constituents of tholins but this statement has never received any clear demonstration. We report here on the comparative analysis of tholins and HCN polymers in order to definitely establish if the molecules identified in the HCN polymers are present in the tholins as well. First, we present a global comparison of HCN polymers with three kinds of tholins, using elemental analysis measurements, infrared spectroscopy and very high resolution mass spectrometry of their soluble fraction. We show that the chemical composition of the HCN polymers is definitely simpler than that of any of the tholins studied. Second, we focus on six ions representative of the composition of HCN polymers and using mass spectrometry (HRMS and MS/HRMS), we determine that these tholins contain at best a minor fraction of this kind of HCN polymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...