Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37738160

RESUMO

The evolution of gene expression is thought to be an important mechanism of local adaptation and ecological speciation. Gene expression divergence occurs through the evolution of cis- polymorphisms and through more widespread effects driven by trans-regulatory factors. Here, we explore expression and sequence divergence in a large sample of Panicum hallii accessions encompassing the species range using a reciprocal transplantation experiment. We observed widespread genotype and transplant site drivers of expression divergence, with a limited number of genes exhibiting genotype-by-site interactions. We used a modified FST-QST outlier approach (QPC analysis) to detect local adaptation. We identified 514 genes with constitutive expression divergence above and beyond the levels expected under neutral processes. However, no plastic expression responses met our multiple testing correction as QPC outliers. Constitutive QPC outlier genes were involved in a number of developmental processes and responses to abiotic environments. Leveraging earlier expression quantitative trait loci results, we found a strong enrichment of expression divergence, including for QPC outliers, in genes previously identified with cis and cis-environment interactions but found no patterns related to trans-factors. Population genetic analyses detected elevated sequence divergence of promoters and coding sequence of constitutive expression outliers but little evidence for positive selection on these proteins. Our results are consistent with a hypothesis of cis-regulatory divergence as a primary driver of expression divergence in P. hallii.

2.
Curr Biol ; 33(10): 1926-1938.e6, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37080198

RESUMO

A fundamental goal in plant microbiome research is to determine the relative impacts of host and environmental effects on root microbiota composition, particularly how host genotype impacts bacterial community composition. Most studies characterizing the effect of plant genotype on root microbiota undersample host genetic diversity and grow plants outside of their native ranges, making the associations between host and microbes difficult to interpret. Here, we characterized the root microbiota of a large diversity panel of switchgrass, a North American native C4 bioenergy crop, in three field locations spanning its native range. Our data, composed of 1,961 samples, suggest that field location is the primary determinant of microbiome composition; however, substantial heritable variation is widespread across bacterial taxa, especially those in the Sphingomonadaceae family. Despite diverse compositions, relatively few highly prevalent taxa make up the majority of the switchgrass root microbiota, a large fraction of which is shared across sites. Local genotypes preferentially recruit/filter for local microbes, supporting the idea of affinity between local plants and their microbiota. Using genome-wide association, we identified loci impacting the abundance of >400 microbial strains and found an enrichment of genes involved in immune responses, signaling pathways, and secondary metabolism. We found loci associated with over half of the core microbiota (i.e., microbes in >80% of samples), regardless of field location. Finally, we show a genetic relationship between a basal plant immunity pathway and relative abundances of root microbiota. This study brings us closer to harnessing and manipulating beneficial microbial associations via host genetics.


Assuntos
Microbiota , Panicum , Panicum/genética , Estudo de Associação Genômica Ampla , Bactérias/genética , Genótipo
3.
Proc Biol Sci ; 290(1991): 20221350, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36651054

RESUMO

Plants interact with diverse microbiomes that can impact plant growth and performance. Recent studies highlight the potential beneficial aspects of plant microbiomes, including the possibility that microbes facilitate the process of local adaptation in their host plants. Microbially mediated local adaptation in plants occurs when local host genotypes have higher fitness than foreign genotypes because of their affiliation with locally beneficial microbes. Here, plant adaptation results from genetic interactions of the host with locally beneficial microbes (e.g. host genotype-by-microbiome interactions). We used a recombinant inbred line (RIL) mapping population derived from upland and lowland ecotypes of the diploid C4 perennial bunch grass Panicum hallii to explore quantitative genetic responses to soil microbiomes focusing on functional root and shoot traits involved in ecotypic divergence. We show that the growth and development of ecotypes and their trait divergence depends on soil microbiomes. Moreover, we find that the genetic architecture is modified by soil microbiomes, revealing important plant genotype-by-microbiome interactions for quantitative traits. We detected a number of quantitative trait loci (QTL) that interact with the soil microbiome. Our results highlight the importance of microbial interactions in ecotypic divergence and trait genetic architecture in C4 perennial grasses.


Assuntos
Microbiota , Panicum , Solo , Fenótipo , Microbiota/genética , Ecótipo , Genótipo , Plantas
4.
Oecologia ; 201(1): 269-278, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36372830

RESUMO

Precipitation is a key driver of primary production worldwide, but primary production does not always track year-to-year variation in precipitation linearly. Instead, plant responses to changes in precipitation may exhibit time lags, or legacies of past precipitation. Legacies can be driven by multiple mechanisms, including persistent changes in plant physiological and morphological traits and changes to the physical environment, such as plant access to soil water. We used three precipitation manipulation experiments in central Texas, USA to evaluate the magnitude, duration, and potential mechanisms driving precipitation legacies on aboveground primary production of the perennial C4 grass, Panicum virgatum. Specifically, we performed a rainout shelter study, where eight genotypes grew under different precipitation regimes; a transplant study, where plants that had previously grown in a rainout shelter under different precipitation regimes were moved to a common environment; and a mesocosm study, where the effect of swapping precipitation regime was examined with a single genotype. Across these experiments, plants previously grown under wet conditions generally performed better than expected when exposed to drought. Panicum virgatum exhibited stronger productivity legacies of past wet years on current-year responses to drought than of past dry years on current-year responses to wet conditions. Additionally, previous year tiller counts, a proxy for meristem availability, were important in determining legacy effects on aboveground production. As climate changes and precipitation extremes-both dry and wet-become more common, these results suggest that populations of P. virgatum may become less resilient.


Assuntos
Panicum , Panicum/genética , Fenômenos Fisiológicos Vegetais , Solo , Secas , Genótipo
5.
Front Plant Sci ; 13: 1019169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275527

RESUMO

Soil salinity can negatively impact plants growth, development and fitness. Natural plant populations restricted to coastal environments may evolve in response to saline habitats and therefore provide insights into the process of salinity adaptation. We investigated the growth and physiological responses of coastal and inland populations of Panicum hallii to experimental salinity treatments. Coastal genotypes demonstrated less growth reduction and superior ion homeostasis compared to the inland genotypes in response to saline conditions, supporting a hypothesis of local adaptation. We identified several QTL associated with the plasticity of belowground biomass, leaf sodium and potassium content, and their ratio which underscores the genetic variation present in this species for salinity responses. Genome-wide transcriptome analysis in leaf and root tissue revealed tissue specific overexpression of genes including several cation transporters in the coastal genotype. These transporters mediate sodium ion compartmentalization and potassium ion retention and thus suggests that maintenance of ionic homeostasis of the coastal genotypes might be due to the regulation of these ion transporters. These findings contribute to our understanding of the genetics and molecular mechanisms of salinity adaptation in natural populations, and widens the scope for genetic manipulation of these candidate genes to design plants more resilient to climate change.

6.
Mol Biol Evol ; 39(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36149808

RESUMO

Appropriate flowering time is a crucial adaptation impacting fitness in natural plant populations. Although the genetic basis of flowering variation has been extensively studied, its mechanisms in nonmodel organisms and its adaptive value in the field are still poorly understood. Here, we report new insights into the genetic basis of flowering time and its effect on fitness in Panicum hallii, a native perennial grass. Genetic mapping in populations derived from inland and coastal ecotypes identified flowering time quantitative trait loci (QTL) and many exhibited extensive QTL-by-environment interactions. Patterns of segregation within recombinant hybrids provide strong support for directional selection driving ecotypic divergence in flowering time. A major QTL on chromosome 5 (q-FT5) was detected in all experiments. Fine-mapping and expression studies identified a gene with orthology to a rice FLOWERING LOCUS T-like 9 (PhFTL9) as the candidate underlying q-FT5. We used a reciprocal transplant experiment to test for local adaptation and the specific impact of q-FT5 on performance. We did not observe local adaptation in terms of fitness tradeoffs when contrasting ecotypes in home versus away habitats. However, we observed that the coastal allele of q-FT5 conferred a fitness advantage only in its local habitat but not at the inland site. Sequence analyses identified an excess of low-frequency polymorphisms at the PhFTL9 promoter in the inland lineage, suggesting a role for either selection or population expansion on promoter evolution. Together, our findings demonstrate the genetic basis of flowering variation in a perennial grass and provide evidence for conditional neutrality underlying flowering time divergence.


Assuntos
Poaceae , Locos de Características Quantitativas , Mapeamento Cromossômico , Ecótipo , Flores/genética , Interação Gene-Ambiente , Poaceae/genética
7.
Proc Natl Acad Sci U S A ; 119(33): e2205305119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35947617

RESUMO

Water-use efficiency (WUE) is the ratio of biomass produced per unit of water consumed; thus, it can be altered by genetic factors that affect either side of the ratio. In the present study, we exploited natural variation for WUE to discover loci affecting either biomass accumulation or water use as factors affecting WUE. Genome-wide association studies (GWAS) using integrated WUE measured through carbon isotope discrimination (δ13C) of Arabidopsis thaliana accessions identified genomic regions associated with WUE. Reverse genetic analysis of 70 candidate genes selected based on the GWAS results and transcriptome data identified 25 genes affecting WUE as measured by gravimetric and δ13C analyses. Mutants of four genes had higher WUE than wild type, while mutants of the other 21 genes had lower WUE. The differences in WUE were caused by either altered biomass or water consumption (or both). Stomatal density (SD) was not a primary cause of altered WUE in these mutants. Leaf surface temperatures indicated that transpiration differed for mutants of 16 genes, but generally biomass accumulation had a greater effect on WUE. The genes we identified are involved in diverse cellular processes, including hormone and calcium signaling, meristematic activity, photosynthesis, flowering time, leaf/vasculature development, and cell wall composition; however, none of them had been previously linked to WUE. Thus, our study successfully identified effectors of WUE that can be used to understand the genetic basis of WUE and improve crop productivity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Água , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Produção Agrícola , Estudo de Associação Genômica Ampla , Folhas de Planta/genética , Folhas de Planta/metabolismo , Água/metabolismo
8.
Theor Appl Genet ; 135(8): 2577-2592, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35780149

RESUMO

KEY MESSAGE: We investigate the genetic basis of panicle architecture in switchgrass in two mapping populations across a latitudinal gradient, and find many stable, repeatable genetic effects and limited genetic interactions with the environment. Grass species exhibit large diversity in panicle architecture influenced by genes, the environment, and their interaction. The genetic study of panicle architecture in perennial grasses is limited. In this study, we evaluate the genetic basis of panicle architecture including panicle length, primary branching number, and secondary branching number in an outcrossed switchgrass QTL population grown across ten field sites in the central USA through multi-environment mixed QTL analysis. We also evaluate genetic effects in a diversity panel of switchgrass grown at three of the ten field sites using genome-wide association (GWAS) and multivariate adaptive shrinkage. Furthermore, we search for candidate genes underlying panicle traits in both of these independent mapping populations. Overall, 18 QTL were detected in the QTL mapping population for the three panicle traits, and 146 unlinked genomic regions in the diversity panel affected one or more panicle trait. Twelve of the QTL exhibited consistent effects (i.e., no QTL by environment interactions or no QTL × E), and most (four of six) of the effects with QTL × E exhibited site-specific effects. Most (59.3%) significant partially linked diversity panel SNPs had significant effects in all panicle traits and all field sites and showed pervasive pleiotropy and limited environment interactions. Panicle QTL co-localized with significant SNPs found using GWAS, providing additional power to distinguish between true and false associations in the diversity panel.


Assuntos
Oryza , Panicum , Mapeamento Cromossômico , Variação Genética , Estudo de Associação Genômica Ampla , Oryza/genética , Panicum/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
9.
Proc Natl Acad Sci U S A ; 119(15): e2118879119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377798

RESUMO

Polyploidy results from whole-genome duplication and is a unique form of heritable variation with pronounced evolutionary implications. Different ploidy levels, or cytotypes, can exist within a single species, and such systems provide an opportunity to assess how ploidy variation alters phenotypic novelty, adaptability, and fitness, which can, in turn, drive the development of unique ecological niches that promote the coexistence of multiple cytotypes. Switchgrass, Panicum virgatum, is a widespread, perennial C4 grass in North America with multiple naturally occurring cytotypes, primarily tetraploids (4×) and octoploids (8×). Using a combination of genomic, quantitative genetic, landscape, and niche modeling approaches, we detect divergent levels of genetic admixture, evidence of niche differentiation, and differential environmental sensitivity between switchgrass cytotypes. Taken together, these findings support a generalist (8×)­specialist (4×) trade-off. Our results indicate that the 8× represent a unique combination of genetic variation that has allowed the expansion of switchgrass' ecological niche and thus putatively represents a valuable breeding resource.


Assuntos
Aclimatação , Panicum , Poliploidia , Aclimatação/genética , Variação Genética , Panicum/genética , Panicum/fisiologia , Tetraploidia
10.
G3 (Bethesda) ; 11(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-33914881

RESUMO

Ionomics measures elemental concentrations in biological organisms and provides a snapshot of physiology under different conditions. In this study, we evaluate genetic variation of the ionome in outbred, perennial switchgrass in three environments across the species' native range, and explore patterns of genotype-by-environment interactions. We grew 725 clonally replicated genotypes of a large full sib family from a four-way linkage mapping population, created from deeply diverged upland and lowland switchgrass ecotypes, at three common gardens. Concentrations of 18 mineral elements were determined in whole post-anthesis tillers using ion coupled plasma mass spectrometry (ICP-MS). These measurements were used to identify quantitative trait loci (QTL) with and without QTL-by-environment interactions (QTLxE) using a multi-environment QTL mapping approach. We found that element concentrations varied significantly both within and between switchgrass ecotypes, and GxE was present at both the trait and QTL level. Concentrations of 14 of the 18 elements were under some genetic control, and 77 QTL were detected for these elements. Seventy-four percent of QTL colocalized multiple elements, half of QTL exhibited significant QTLxE, and roughly equal numbers of QTL had significant differences in magnitude and sign of their effects across environments. The switchgrass ionome is under moderate genetic control and by loci with highly variable effects across environments.


Assuntos
Panicum , Locos de Características Quantitativas , Panicum/genética , Interação Gene-Ambiente , Mapeamento Cromossômico , Fenótipo , Genótipo
11.
AoB Plants ; 13(2): plab002, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33708370

RESUMO

Geographic patterns of within-species genomic diversity are shaped by evolutionary processes, life history and historical and contemporary factors. New genomic approaches can be used to infer the influence of such factors on the current distribution of infraspecific lineages. In this study, we evaluated the genomic and morphological diversity as well as the genetic structure of the C4 grass Panicum hallii across its complex natural distribution in North America. We sampled extensively across the natural range of P. hallii in Mexico and the USA to generate double-digestion restriction-associated DNA (ddRAD) sequence data for 423 individuals from 118 localities. We used these individuals to study the divergence between the two varieties of P. hallii, P. hallii var. filipes and P. hallii var. hallii as well as the genetic diversity and structure within these groups. We also examined the possibility of admixture in the geographically sympatric zone shared by both varieties, and assessed distribution shifts related with past climatic fluctuations. There is strong genetic and morphological divergence between the varieties and consistent genetic structure defining seven genetic clusters that follow major ecoregions across the range. South Texas constitutes a hotspot of genetic diversity with the co-occurrence of all genetic clusters and admixture between the two varieties. It is likely a recolonization and convergence point of populations that previously diverged in isolation during fragmentation events following glaciation periods.

12.
Nature ; 590(7846): 438-444, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33505029

RESUMO

Long-term climate change and periodic environmental extremes threaten food and fuel security1 and global crop productivity2-4. Although molecular and adaptive breeding strategies can buffer the effects of climatic stress and improve crop resilience5, these approaches require sufficient knowledge of the genes that underlie productivity and adaptation6-knowledge that has been limited to a small number of well-studied model systems. Here we present the assembly and annotation of the large and complex genome of the polyploid bioenergy crop switchgrass (Panicum virgatum). Analysis of biomass and survival among 732 resequenced genotypes, which were grown across 10 common gardens that span 1,800 km of latitude, jointly revealed extensive genomic evidence of climate adaptation. Climate-gene-biomass associations were abundant but varied considerably among deeply diverged gene pools. Furthermore, we found that gene flow accelerated climate adaptation during the postglacial colonization of northern habitats through introgression of alleles from a pre-adapted northern gene pool. The polyploid nature of switchgrass also enhanced adaptive potential through the fractionation of gene function, as there was an increased level of heritable genetic diversity on the nondominant subgenome. In addition to investigating patterns of climate adaptation, the genome resources and gene-trait associations developed here provide breeders with the necessary tools to increase switchgrass yield for the sustainable production of bioenergy.


Assuntos
Aclimatação/genética , Biocombustíveis , Genoma de Planta/genética , Genômica , Aquecimento Global , Panicum/genética , Poliploidia , Biomassa , Ecótipo , Evolução Molecular , Fluxo Gênico , Pool Gênico , Introgressão Genética , Anotação de Sequência Molecular , Panicum/classificação , Panicum/crescimento & desenvolvimento , Estados Unidos
13.
Genes (Basel) ; 13(1)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-35052362

RESUMO

Switchgrass is a promising feedstock for biofuel production, with potential for leveraging its native microbial community to increase productivity and resilience to environmental stress. Here, we characterized the bacterial, archaeal and fungal diversity of the leaf microbial community associated with four switchgrass (Panicum virgatum) genotypes, subjected to two harvest treatments (annual harvest and unharvested control), and two fertilization levels (fertilized and unfertilized control), based on 16S rRNA gene and internal transcribed spacer (ITS) region amplicon sequencing. Leaf surface and leaf endosphere bacterial communities were significantly different with Alphaproteobacteria enriched in the leaf surface and Gammaproteobacteria and Bacilli enriched in the leaf endosphere. Harvest treatment significantly shifted presence/absence and abundances of bacterial and fungal leaf surface community members: Gammaproteobacteria were significantly enriched in harvested and Alphaproteobacteria were significantly enriched in unharvested leaf surface communities. These shifts were most prominent in the upland genotype DAC where the leaf surface showed the highest enrichment of Gammaproteobacteria, including taxa with 100% identity to those previously shown to have phytopathogenic function. Fertilization did not have any significant impact on bacterial or fungal communities. We also identified bacterial and fungal taxa present in both the leaf surface and leaf endosphere across all genotypes and treatments. These core taxa were dominated by Methylobacterium, Enterobacteriaceae, and Curtobacterium, in addition to Aureobasidium, Cladosporium, Alternaria and Dothideales. Local core leaf bacterial and fungal taxa represent promising targets for plant microbe engineering and manipulation across various genotypes and harvest treatments. Our study showcases, for the first time, the significant impact that harvest treatment can have on bacterial and fungal taxa inhabiting switchgrass leaves and the need to include this factor in future plant microbial community studies.


Assuntos
Microbiota/fisiologia , Panicum/genética , Folhas de Planta/genética , Archaea/patogenicidade , Bactérias/patogenicidade , Biodiversidade , Biocombustíveis/microbiologia , Fungos/patogenicidade , Panicum/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Microbiologia do Solo
14.
Theor Appl Genet ; 133(11): 3119-3137, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32803378

RESUMO

KEY MESSAGE: Quantitation of leaf surface wax on a population of switchgrass identified three significant QTL present across six environments that contribute to leaf glaucousness and wax composition and that show complex genetic × environmental (G × E) interactions. The C4 perennial grass Panicum virgatum (switchgrass) is a native species of the North American tallgrass prairie. This adaptable plant can be grown on marginal lands and is useful for soil and water conservation, biomass production, and as a forage. Two major switchgrass ecotypes, lowland and upland, differ in a range of desirable traits, and the responsible underlying loci can be localized efficiently in a pseudotestcross design. An outbred four-way cross (4WCR) mapping population of 750 F2 lines was used to examine the genetic basis of differences in leaf surface wax load between two lowland (AP13 and WBC) and two upland (DAC and VS16) tetraploid cultivars. The objective of our experiments was to identify wax compositional variation among the population founders and to map underlying loci responsible for surface wax variation across environments. GCMS analyses of surface wax extracted from 4WCR F0 founders and F1 hybrids reveal higher levels of wax in lowland genotypes and show quantitative differences of ß-diketones, primary alcohols, and other wax constituents. The full mapping population was sampled over two seasons from four field sites with latitudes ranging from 30 to 42 °N, and leaf surface wax was measured. We identified three high-confidence QTL, of which two displayed significant G × E effects. Over 50 candidate genes underlying the QTL regions showed similarity to genes in either Arabidopsis or barley known to function in wax synthesis, modification, regulation, and transport.


Assuntos
Interação Gene-Ambiente , Panicum/genética , Folhas de Planta/química , Locos de Características Quantitativas , Ceras , Mapeamento Cromossômico , Cruzamentos Genéticos , Ecótipo , Ligação Genética , Genótipo , Panicum/química , Fenótipo , Tetraploidia
15.
New Phytol ; 227(6): 1696-1708, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32202657

RESUMO

Local adaptation is an important process in plant evolution, which can be impacted by differential pathogen pressures along environmental gradients. However, the degree to which pathogen resistance loci vary in effect across space and time is incompletely described. To understand how the genetic architecture of resistance varies across time and geographic space, we quantified rust (Puccinia spp.) severity in switchgrass (Panicum virgatum) plantings at eight locations across the central USA for 3 yr and conducted quantitative trait locus (QTL) mapping for rust progression. We mapped several variable QTLs, but two large-effect QTLs which we have named Prr1 and Prr2 were consistently associated with rust severity in multiple sites and years, particularly in northern sites. By contrast, there were numerous small-effect QTLs at southern sites, indicating a genotype-by-environment interaction in rust resistance loci. Interestingly, Prr1 and Prr2 had a strong epistatic interaction, which also varied in the strength and direction of effect across space. Our results suggest that abiotic factors covarying with latitude interact with the genetic loci underlying plant resistance to control rust infection severity. Furthermore, our results indicate that segregating genetic variation in epistatically interacting loci may play a key role in determining response to infection across geographic space.


Assuntos
Basidiomycota , Panicum , Biocombustíveis , Resistência à Doença/genética , Ecótipo , Panicum/genética , Doenças das Plantas/genética
16.
Front Microbiol ; 10: 2181, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611851

RESUMO

Panicum represents a large genus of many North American prairie grass species. These include switchgrass (Panicum virgatum), a biofuel crop candidate with wide geographic range, as well as Panicum hallii, a close relative to switchgrass, which serves as a model system for the study of Panicum genetics due to its diploid genome and short growth cycles. For the advancement of switchgrass as a biofuel crop, it is essential to understand host microbiome interactions, which can be impacted by plant genetics and environmental factors inducing ecotype-specific phenotypic traits. We here compared rhizosphere and root endosphere bacterial communities of upland and lowland P. virgatum and P. hallii genotypes planted at two sites in Texas. Our analysis shows that sampling site predominantly contributed to bacterial community variance in the rhizosphere, however, impacted root endosphere bacterial communities much less. Instead we observed a relatively large core endophytic microbiome dominated by ubiquitously root-colonizing bacterial genera Streptomyces, Pseudomonas, and Bradyrhizobium. Endosphere communities displayed comparable diversity and conserved community structures across genotypes of both Panicum species. Functional insights into interactions between P. hallii and its root endophyte microbiome could hence inform testable hypotheses that are relevant for the improvement of switchgrass as a biofuel crop.

17.
Proc Natl Acad Sci U S A ; 116(26): 12933-12941, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31182579

RESUMO

Local adaptation is the process by which natural selection drives adaptive phenotypic divergence across environmental gradients. Theory suggests that local adaptation results from genetic trade-offs at individual genetic loci, where adaptation to one set of environmental conditions results in a cost to fitness in alternative environments. However, the degree to which there are costs associated with local adaptation is poorly understood because most of these experiments rely on two-site reciprocal transplant experiments. Here, we quantify the benefits and costs of locally adaptive loci across 17° of latitude in a four-grandparent outbred mapping population in outcrossing switchgrass (Panicum virgatum L.), an emerging biofuel crop and dominant tallgrass species. We conducted quantitative trait locus (QTL) mapping across 10 sites, ranging from Texas to South Dakota. This analysis revealed that beneficial biomass (fitness) QTL generally incur minimal costs when transplanted to other field sites distributed over a large climatic gradient over the 2 y of our study. Therefore, locally advantageous alleles could potentially be combined across multiple loci through breeding to create high-yielding regionally adapted cultivars.


Assuntos
Aclimatação/genética , Interação Gene-Ambiente , Panicum/fisiologia , Locos de Características Quantitativas/fisiologia , Seleção Genética/fisiologia , Biocombustíveis , Biomassa , Mapeamento Cromossômico , Temperatura Baixa/efeitos adversos , Geografia , Temperatura Alta/efeitos adversos , Melhoramento Vegetal/métodos , Estados Unidos
18.
Front Plant Sci ; 10: 366, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019518

RESUMO

Environmental heterogeneity can drive patterns of functional trait variation and lead to the formation of locally adapted ecotypes. Plant ecotypes are often differentiated by suites of correlated root and shoot traits that share common genetic, developmental, and physiological relationships. For instance, although plant water loss is largely governed by shoot systems, root systems determine water access and constrain shoot water status. To evaluate the genetic basis of root and shoot trait divergence, we developed a recombinant inbred population derived from mesic and xeric ecotypes of the perennial grass Panicum hallii. Our study sheds light on the genetic architecture underlying the relationships between root and shoot traits. We identified several genomic "hotspots" which control suites of correlated root and shoot traits, thus indicating genetic coordination between plant organ systems in the process of ecotypic divergence. Genomic regions of colocalized quantitative trait locus (QTL) for the majority of shoot and root growth related traits were independent of colocalized QTL for shoot and root resource acquisition traits. The allelic effects of individual QTL underscore ecological specialization for drought adaptation between ecotypes and reveal possible hybrid breakdown through epistatic interactions. These results have implications for understanding the factors constraining or facilitating local adaptation in plants.

19.
Environ Microbiol Rep ; 11(2): 185-195, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30537406

RESUMO

Switchgrass (Panicum virgatum) is a promising biofuel crop native to the United States with genotypes that are adapted to a wide range of distinct ecosystems. Various plants have been shown to undergo symbioses with plant growth-promoting bacteria and fungi, however, plant-associated microbial communities of switchgrass have not been extensively studied to date. We present 16S ribosomal RNA gene and internal transcribed spacer (ITS) data of rhizosphere and root endosphere compartments of four switchgrass genotypes to test the hypothesis that host selection of its root microbiota prevails after transfer to non-native soil. We show that differences in bacterial, archaeal and fungal community composition and diversity are strongly driven by plant compartment and switchgrass genotypes and ecotypes. Plant-associated microbiota show an enrichment in Alphaproteobacteria and Actinobacteria as well as Sordariales and Pleosporales compared with the surrounding soil. Root associated compartments display low-complexity communities dominated and enriched in Actinobacteria, in particular Streptomyces, in the lowland genotypes, and in Alphaproteobacteria, specifically Sphingobium, in the upland genotypes. Our comprehensive root analysis serves as a snapshot of host-specific bacterial and fungal associations of switchgrass in the field and confirms that host-selected microbiomes persist after transfer to non-native soil.


Assuntos
Microbiota , Panicum/genética , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , DNA Ribossômico/genética , Ecótipo , Fungos/genética , Fungos/isolamento & purificação , Genótipo , Especificidade de Hospedeiro , Panicum/microbiologia , Raízes de Plantas/genética , Análise de Sequência de DNA
20.
Nat Commun ; 9(1): 5213, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30523281

RESUMO

Environmental stress is a major driver of ecological community dynamics and agricultural productivity. This is especially true for soil water availability, because drought is the greatest abiotic inhibitor of worldwide crop yields. Here, we test the genetic basis of drought responses in the genetic model for C4 perennial grasses, Panicum hallii, through population genomics, field-scale gene-expression (eQTL) analysis, and comparison of two complete genomes. While gene expression networks are dominated by local cis-regulatory elements, we observe three genomic hotspots of unlinked trans-regulatory loci. These regulatory hubs are four times more drought responsive than the genome-wide average. Additionally, cis- and trans-regulatory networks are more likely to have opposing effects than expected under neutral evolution, supporting a strong influence of compensatory evolution and stabilizing selection. These results implicate trans-regulatory evolution as a driver of drought responses and demonstrate the potential for crop improvement in drought-prone regions through modification of gene regulatory networks.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Genômica/métodos , Panicum/genética , Estresse Fisiológico , Redes Reguladoras de Genes , Genes de Plantas/genética , Genótipo , Panicum/classificação , Filogenia , Locos de Características Quantitativas/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...