Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Front Microbiol ; 15: 1364026, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562479

RESUMO

Shiga toxin (Stx)-producing Escherichia coli (STEC) of non-O157:H7 serotypes are responsible for global and widespread human food-borne disease. Among these serogroups, O26, O45, O103, O111, O121, and O145 account for the majority of clinical infections and are colloquially referred to as the "Big Six." The "Big Six" strain panel we sequenced and analyzed in this study are reference type cultures comprised of six strains representing each of the non-O157 STEC serogroups curated and distributed by the American Type Culture Collection (ATCC) as a resource to the research community under panel number ATCC MP-9. The application of long- and short-read hybrid sequencing yielded closed chromosomes and a total of 14 plasmids of diverse functions. Through high-resolution comparative phylogenomics, we cataloged the shared and strain-specific virulence and resistance gene content and established the close relationship of serogroup O26 and O103 strains featuring flagellar H-type 11. Virulence phenotyping revealed statistically significant differences in the Stx-production capabilities that we found to be correlated to the strain's individual stx-status. Among the carried Stx1a, Stx2a, and Stx2d phages, the Stx2a phage is by far the most responsive upon RecA-mediated phage mobilization, and in consequence, stx2a + isolates produced the highest-level of toxin in this panel. The availability of high-quality closed genomes for this "Big Six" reference set, including carried plasmids, along with the recorded genomic virulence profiles and Stx-production phenotypes will provide a valuable foundation to further explore the plasticity in evolutionary trajectories in these emerging non-O157 STEC lineages, which are major culprits of human food-borne disease.

2.
Microorganisms ; 12(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38674643

RESUMO

Shiga toxin-producing Escherichia coli are zoonotic pathogens that cause food-borne human disease. Among these, the O157:H7 serotype has evolved from an enteropathogenic O55:H7 ancestor through the displacement of the somatic gene cluster and recurrent toxigenic conversion by Shiga toxin-converting bacteriophages. However, atypical strains that lack the Shiga toxin, the characteristic virulence hallmark, are circulating in this lineage. For this study, we analyzed the pathogenome and virulence inventories of the stx+ strain, TT12A, isolated from a patient with hemorrhagic colitis, and its respective co-isolated stx- strain, TT12B. Sequencing the genomes to closure proved critical to the cataloguing of subtle strain differentiating sequence and structural polymorphisms at a high-level of phylogenetic accuracy and resolution. Phylogenomic profiling revealed SNP and MLST profiles similar to the near clonal outbreak isolates. Their prophage inventories, however, were notably different. The attenuated atypical non-shigatoxigenic status of TT12B is explained by the absence of both the ΦStx1a- and ΦStx2a-prophages carried by TT12A, and we also recorded further alterations in the non-Stx prophage complement. Phenotypic characterization indicated that culture growth was directly impacted by the strains' distinct lytic phage complement. Altogether, our phylogenomic and phenotypic analyses show that these intimately related isogenic strains are on divergent Stx(+/stx-) evolutionary paths.

3.
Microorganisms ; 11(11)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38004814

RESUMO

Escherichia albertii is an emerging foodborne pathogen. To better understand the pathogenesis and health risk of this pathogen, comparative genomics and phenotypic characterization were applied to assess the pathogenicity potential of E. albertii strains isolated from wild birds in a major agricultural region in California. Shiga toxin genes stx2f were present in all avian strains. Pangenome analyses of 20 complete genomes revealed a total of 11,249 genes, of which nearly 80% were accessory genes. Both core gene-based phylogenetic and accessory gene-based relatedness analyses consistently grouped the three stx2f-positive clinical strains with the five avian strains carrying ST7971. Among the three Stx2f-converting prophage integration sites identified, ssrA was the most common one. Besides the locus of enterocyte effacement and type three secretion system, the high pathogenicity island, OI-122, and type six secretion systems were identified. Substantial strain variation in virulence gene repertoire, Shiga toxin production, and cytotoxicity were revealed. Six avian strains exhibited significantly higher cytotoxicity than that of stx2f-positive E. coli, and three of them exhibited a comparable level of cytotoxicity with that of enterohemorrhagic E. coli outbreak strains, suggesting that wild birds could serve as a reservoir of E. albertii strains with great potential to cause severe diseases in humans.

4.
Front Microbiol ; 14: 1303387, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38169669

RESUMO

Shiga toxin-producing Escherichia coli (STEC) O157:H7 strains with the T allele in the translocated intimin receptor polymorphism (tir) 255 A > T gene associate with human disease more than strains with an A allele; however, the allele is not thought to be the direct cause of this difference. We sequenced a diverse set of STEC O157:H7 strains (26% A allele, 74% T allele) to identify linked differences that might underlie disease association. The average chromosome and pO157 plasmid size and gene content were significantly greater within the tir 255 A allele strains. Eighteen coding sequences were unique to tir 255 A allele chromosomes, and three were unique to tir 255 T allele chromosomes. There also were non-pO157 plasmids that were unique to each tir 255 allele variant. The overall average number of prophages did not differ between tir 255 allele strains; however, there were different types between the strains. Genomic and mobile element variation linked to the tir 255 polymorphism may account for the increased frequency of the T allele isolates in human disease.

5.
BMC Microbiol ; 22(1): 258, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271336

RESUMO

BACKGROUND: Moraxella bovis and Moraxella bovoculi both associate with infectious bovine keratoconjunctivitis (IBK), an economically significant and painful ocular disease that affects cattle worldwide. There are two genotypes of M. bovoculi (genotypes 1 and 2) that differ in their gene content and potential virulence factors, although neither have been experimentally shown to cause IBK. M. bovis is a causative IBK agent, however, not all strains carry a complete assortment of known virulence factors. The goals of this study were to determine the population structure and depth of M. bovis genomic diversity, and to compare core and accessory genes and predicted outer membrane protein profiles both within and between M. bovis and M. bovoculi. RESULTS: Phylogenetic trees and bioinformatic analyses of 36 M. bovis chromosomes sequenced in this study and additional available chromosomes of M. bovis and both genotype 1 and 2 M. bovoculi, showed there are two genotypes (1 and 2) of M. bovis. The two M. bovis genotypes share a core of 2015 genes, with 121 and 186 genes specific to genotype 1 and 2, respectively. The two genotypes differ by their chromosome size and prophage content, encoded protein variants of the virulence factor hemolysin, and by their affiliation with different plasmids. Eight plasmid types were identified in this study, with types 1 and 6 observed in 88 and 56% of genotype 2 strains, respectively, and absent from genotype 1 strains. Only type 1 plasmids contained one or two gene copies encoding filamentous haemagglutinin-like proteins potentially involved with adhesion. A core of 1403 genes was shared between the genotype 1 and 2 strains of both M. bovis and M. bovoculi, which encoded a total of nine predicted outer membrane proteins. CONCLUSIONS: There are two genotypes of M. bovis that differ in both chromosome content and plasmid profiles and thus may not equally associate with IBK. Immunological reagents specifically targeting select genotypes of M. bovis, or all genotypes of M. bovis and M. bovoculi together could be designed from the outer membrane proteins identified in this study.


Assuntos
Doenças dos Bovinos , Ceratoconjuntivite Infecciosa , Moraxella bovis , Infecções por Moraxellaceae , Bovinos , Animais , Moraxella bovis/genética , Filogenia , Proteínas Hemolisinas/genética , Hemaglutininas , Infecções por Moraxellaceae/veterinária , Genótipo , Sequenciamento Completo do Genoma , Fatores de Virulência/genética
6.
Microorganisms ; 10(8)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36013963

RESUMO

Escherichia coli O55:H7 is a human foodborne pathogen and is recognized as the progenitor strain of E. coli O157:H7. While this strain is important from a food safety and genomic evolution standpoint, much of the genomic diversity of E. coli O55:H7 has been demonstrated using draft genomes. Here, we combine the four publicly available E. coli O55:H7 closed genomes with six newly sequenced closed genomes to provide context to this strain's genomic diversity. We found significant diversity within the 10 E. coli O55:H7 strains that belonged to three different sequence types. The prophage content was about 10% of the genome, with three prophages common to all strains and seven unique to one strain. Overall, there were 492 insertion sequences identified within the six new sequence strains, with each strain on average containing 75 insertions (range 55 to 114). A total of 31 plasmids were identified between all isolates (range 1 to 6), with one plasmid (pO55) having an identical phylogenetic tree as the chromosome. The release and comparison of these closed genomes provides new insight into E. coli O55:H7 diversity and its ability to cause disease in humans.

7.
BMC Genomics ; 23(1): 275, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35392797

RESUMO

BACKGROUND: Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a pathogen known to reside in cattle feedlots. This retrospective study examined 181 STEC O157:H7 strains collected over 23 years from a closed-system feedlot. All strains were subjected to short-read sequencing, with a subset of 36 also subjected to long-read sequencing. RESULTS: Over 96% of the strains fell into four phylogenetically distinct clades. Clade membership was associated with multiple factors including stx composition and the alleles of a well-characterized polymorphism (tir 255 T > A). Small plasmids (2.7 to 40 kb) were found to be primarily clade specific. Within each clade, chromosomal rearrangements were observed along with a core phageome and clade specific phages. Across both core and mobile elements of the genome, multiple SNP alleles were in complete linkage disequilibrium across all strains within specific clades. Clade evolutionary rates varied between 0.9 and 2.8 SNP/genome/year with two tir A allele clades having the lowest evolutionary rates. Investigation into possible causes of the differing rates was not conclusive but revealed a synonymous based mutation in the DNA polymerase III of the fastest evolving clade. Phylogenetic trees generated through our bioinformatic pipeline versus the NCBI's pathogen detection project were similar, with the two tir A allele clades matching individual NCBI SNP clusters, and the two tir T allele clades assigned to multiple closely-related SNP clusters. CONCLUSIONS: In one ecological niche, a diverse STEC O157:H7 population exhibited different rates of evolution that associated with SNP alleles in linkage disequilibrium in the core genome and mobile elements, including tir 255 T > A.


Assuntos
Infecções por Escherichia coli , Escherichia coli O157 , Alelos , Animais , Bovinos , Ecossistema , Infecções por Escherichia coli/epidemiologia , Escherichia coli O157/genética , Filogenia , Estudos Retrospectivos
8.
Microb Genom ; 7(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34751643

RESUMO

The human zoonotic pathogen Escherichia coli O157:H7 is defined by its extensive prophage repertoire including those that encode Shiga toxin, the factor responsible for inducing life-threatening pathology in humans. As well as introducing genes that can contribute to the virulence of a strain, prophage can enable the generation of large-chromosomal rearrangements (LCRs) by homologous recombination. This work examines the types and frequencies of LCRs across the major lineages of the O157:H7 serotype. We demonstrate that LCRs are a major source of genomic variation across all lineages of E. coli O157:H7 and by using both optical mapping and Oxford Nanopore long-read sequencing prove that LCRs are generated in laboratory cultures started from a single colony and that these variants can be recovered from colonized cattle. LCRs are biased towards the terminus region of the genome and are bounded by specific prophages that share large regions of sequence homology associated with the recombinational activity. RNA transcriptional profiling and phenotyping of specific structural variants indicated that important virulence phenotypes such as Shiga-toxin production, type-3 secretion and motility can be affected by LCRs. In summary, E. coli O157:H7 has acquired multiple prophage regions over time that act to continually produce structural variants of the genome. These findings raise important questions about the significance of this prophage-mediated genome contingency to enhance adaptability between environments.


Assuntos
Escherichia coli O157 , Animais , Bovinos , Escherichia coli O157/genética , Variação Estrutural do Genoma , Prófagos/genética , Toxina Shiga/genética , Toxina Shiga II/genética
9.
PLoS One ; 16(10): e0258753, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34710106

RESUMO

Cattle are the main reservoir of Enterohemorrhagic Escherichia coli (EHEC), with O157:H7 the distinctive serotype. EHEC is the main causative agent of a severe systemic disease, Hemolytic Uremic Syndrome (HUS). Argentina has the highest pediatric HUS incidence worldwide with 12-14 cases per 100,000 children. Herein, we assessed the genomes of EHEC O157:H7 isolates recovered from cattle in the humid Pampas of Argentina. According to phylogenetic studies, EHEC O157 can be divided into clades. Clade 8 strains that were classified as hypervirulent. Most of the strains of this clade have a Shiga toxin stx2a-stx2c genotype. To better understand the molecular bases related to virulence, pathogenicity and evolution of EHEC O157:H7, we performed a comparative genomic analysis of these isolates through whole genome sequencing. The isolates classified as clade 8 (four strains) and clade 6 (four strains) contained 13 to 16 lambdoid prophages per genome, and the observed variability of prophages was analysed. An inter strain comparison show that while some prophages are highly related and can be grouped into families, other are unique. Prophages encoding for stx2a were highly diverse, while those encoding for stx2c were conserved. A cluster of genes exclusively found in clade 8 contained 13 genes that mostly encoded for DNA binding proteins. In the studied strains, polymorphisms in Q antiterminator, the Q-stx2A intergenic region and the O and P γ alleles of prophage replication proteins are associated with different levels of Stx2a production. As expected, all strains had the pO157 plasmid that was highly conserved, although one strain displayed a transposon interruption in the protease EspP gene. This genomic analysis may contribute to the understanding of the genetic basis of the hypervirulence of EHEC O157:H7 strains circulating in Argentine cattle. This work aligns with other studies of O157 strain variation in other populations that shows key differences in Stx2a-encoding prophages.


Assuntos
Infecções por Escherichia coli/epidemiologia , Escherichia coli O157/genética , Genoma Bacteriano , Toxina Shiga/genética , Fatores de Virulência/genética , Animais , Argentina/epidemiologia , Bovinos , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/isolamento & purificação , Genótipo , Filogenia , Prófagos , Sorogrupo , Toxina Shiga/metabolismo , Virulência
10.
Antibiotics (Basel) ; 10(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34572623

RESUMO

An antibiotic susceptibility monitoring programme was conducted from 2004 to 2010, resulting in a collection of 143 Escherichia coli cultured from bovine faecal samples (diarrhoea) and milk-aliquots (mastitis). The isolates were subjected to whole-genome sequencing and were distributed in phylogroups A, B1, B2, C, D, E, and G with no correlation for particular genotypes with pathotypes. In fact, the population structure showed that the strains belonging to the different phylogroups matched broadly to ST complexes; however, the isolates are randomly associated with the diseases, highlighting the necessity to investigate the virulence factors more accurately in order to identify the mechanisms by which they cause disease. The antimicrobial resistance was assessed phenotypically, confirming the genomic prediction on three isolates that were resistant to colistin, although one isolate was positive for the presence of the gene mcr-1 but susceptible to colistin. To further characterise the genomic context, the four strains were sequenced by using a single-molecule long read approach. Genetic analyses indicated that these four isolates harboured complex and diverse plasmids encoding not only antibiotic resistant genes (including mcr-1 and bla) but also virulence genes (siderophore, ColV, T4SS). A detailed description of the plasmids of these four E. coli strains, which are linked to bovine mastitis and diarrhoea, is presented for the first time along with the characterisation of the predicted antibiotic resistance genes. The study highlighted the diversity of incompatibility types encoding complex antibiotic resistance elements such as Tn6330, ISEcp1, Tn6029, and IS5075. The mcr-1 resistance determinant was identified in IncHI2 plasmids pCFS3273-1 and pCFS3292-1, thus providing some of the earliest examples of mcr-1 reported in Europe, and these sequences may be a representative of the early mcr-1 plasmidome characterisation in the EU/EEA.

11.
Microbiol Resour Announc ; 10(29): e0050221, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34292065

RESUMO

Escherichia coli isolate AW1.7 is an extremely heat-resistant bacterium and has been widely used as a reference strain in extreme heat resistance studies for almost a decade. Here, we report its complete closed genome sequence.

12.
Appl Environ Microbiol ; 87(7)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33483306

RESUMO

Microbial resistance to processing treatments poses a food safety concern, as treatment tolerant pathogens can emerge. Occasional foodborne outbreaks caused by pathogenic Escherichia coli have led to human and economic losses. Therefore, this study screened for the extreme heat resistance (XHR) phenotype as well as one known genetic marker, the locus of heat resistance (LHR), in 4,123 E. coli isolates from diverse meat animals at different processing stages. The prevalences of XHR and LHR among the meat-borne E. coli were found to be 10.3% and 11.4%, respectively, with 19% agreement between the two. Finished meat products showed the highest LHR prevalence (24.3%) compared to other processing stages (0 to 0.6%). None of the LHR+E. coli in this study would be considered pathogens based on screening for virulence genes. Four high-quality genomes were generated by whole-genome sequencing of representative LHR+ isolates. Nine horizontally acquired LHRs were identified and characterized, four plasmid-borne and five chromosomal. Nine newly identified LHRs belong to ClpK1 LHR or ClpK2 LHR variants sharing 61 to 68% nucleotide sequence identity, while one LHR appears to be a hybrid. Our observations suggest positive correlation between the number of LHR regions present in isolates and the extent of heat resistance. The isolate exhibiting the highest degree of heat resistance possessed four LHRs belonging to three different variant groups. Maintenance of as many as four LHRs in a single genome emphasizes the benefits of the LHR in bacterial physiology and stress response.IMPORTANCE Currently, a "multiple-hurdle" approach based on a combination of different antimicrobial interventions, including heat, is being utilized during meat processing to control the burden of spoilage and pathogenic bacteria. Our recent study (M. Guragain, G. E. Smith, D. A. King, and J. M. Bosilevac, J Food Prot 83:1438-1443, 2020, https://doi.org/10.4315/JFP-20-103) suggests that U.S. beef cattle harbor Escherichia coli that possess the locus of heat resistance (LHR). LHR seemingly contributes to the global stress tolerance in bacteria and hence poses a food safety concern. Therefore, it is important to understand the distribution of the LHRs among meat-borne bacteria identified at different stages of different meat processing systems. Complete genome sequencing and comparative analysis of selected heat-resistant bacteria provide a clearer understanding of stress and heat resistance mechanisms. Further, sequencing data may offer a platform to gain further insights into the genetic background that provides optimal bacterial tolerance against heat and other processing treatments.


Assuntos
Escherichia coli/fisiologia , Genoma Bacteriano , Carne/microbiologia , Escherichia coli/genética , Temperatura Alta , Sequenciamento Completo do Genoma
13.
Food Microbiol ; 93: 103615, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32912587

RESUMO

Little progress has been made in decreasing the incidence rate of salmonellosis in the US over the past decade. Mitigating the contribution of contaminated raw meat to the salmonellosis incidence rate requires rapid methods for quantifying Salmonella, so that highly contaminated products can be removed before entering the food chain. Here we evaluated the use of Time-to-Positivity (TTP) as a rapid, semi-quantitative approach for estimating Salmonella contamination levels in ground beef. Growth rates of 14 Salmonella strains (inoculated at log 1 to -2 CFU/g) were characterized in lean ground beef mTSB enrichments and time-to-detection was determined using culture and molecular detection methods. Enrichments were sampled at five timepoints and results were used to construct a prediction model of estimated contamination level by TTP (superscript indicates time in hours) defined as TTP4: ≥5 CFU/g; TTP6: ≤5, ≥1 CFU/g; TTP8: ≤1, ≥0.01 CFU/g; with samples negative at 8 h estimated ≤0.01 CFU/g. Model performance measures showed high sensitivity (100%) and specificity (83% and 93% for two detection methods) for samples with a TTP4, with false negative rates of 0%.


Assuntos
Contaminação de Alimentos/análise , Microbiologia de Alimentos , Carne/microbiologia , Salmonella enterica/isolamento & purificação , Animais , Bovinos , DNA Bacteriano , Patologia Molecular/métodos , Intoxicação Alimentar por Salmonella , Infecções por Salmonella , Salmonella enterica/genética , Sensibilidade e Especificidade
14.
BMC Microbiol ; 20(1): 250, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787780

RESUMO

BACKGROUND: Mannheimia haemolytica strains isolated from North American cattle have been classified into two genotypes (1 and 2). Although members of both genotypes have been isolated from the upper and lower respiratory tracts of cattle with or without bovine respiratory disease (BRD), genotype 2 strains are much more frequently isolated from diseased lungs than genotype 1 strains. The mechanisms behind the increased association of genotype 2 M. haemolytica with BRD are not fully understood. To address that, and to search for interventions against genotype 2 M. haemolytica, complete, closed chromosome assemblies for 35 genotype 1 and 34 genotype 2 strains were generated and compared. Searches were conducted for the pan genome, core genes shared between the genotypes, and for genes specific to either genotype. Additionally, genes encoding outer membrane proteins (OMPs) specific to genotype 2 M. haemolytica were identified, and the diversity of their protein isoforms was characterized with predominantly unassembled, short-read genomic sequences for up to 1075 additional strains. RESULTS: The pan genome of the 69 sequenced M. haemolytica strains consisted of 3111 genes, of which 1880 comprised a shared core between the genotypes. A core of 112 and 179 genes or gene variants were specific to genotype 1 and 2, respectively. Seven genes encoding predicted OMPs; a peptidase S6, a ligand-gated channel, an autotransporter outer membrane beta-barrel domain-containing protein (AOMB-BD-CP), a porin, and three different trimeric autotransporter adhesins were specific to genotype 2 as their genotype 1 homologs were either pseudogenes, or not detected. The AOMB-BD-CP gene, however, appeared to be truncated across all examined genotype 2 strains and to likely encode dysfunctional protein. Homologous gene sequences from additional M. haemolytica strains confirmed the specificity of the remaining six genotype 2 OMP genes and revealed they encoded low isoform diversity at the population level. CONCLUSION: Genotype 2 M. haemolytica possess genes encoding conserved OMPs not found intact in more commensally prone genotype 1 strains. Some of the genotype 2 specific genes identified in this study are likely to have important biological roles in the pathogenicity of genotype 2 M. haemolytica, which is the primary bacterial cause of BRD.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Doenças dos Bovinos/microbiologia , Mannheimia haemolytica/genética , Infecções Respiratórias/veterinária , Sequenciamento Completo do Genoma/métodos , Animais , Bovinos , Cromossomos Bacterianos/genética , Genótipo , Mannheimia haemolytica/classificação , Mannheimia haemolytica/isolamento & purificação , Mutação , Filogenia
15.
Front Microbiol ; 11: 619, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351476

RESUMO

The toxigenic conversion of Escherichia coli strains by Shiga toxin-converting (Stx) bacteriophages were prominent and recurring events in the stepwise evolution of enterohemorrhagic E. coli (EHEC) O157:H7 from an enteropathogenic (EPEC) O55:H7 ancestor. Atypical, attenuated isolates have been described for both non-sorbitol fermenting (NSF) O157:H7 and SF O157:NM serotypes, which are distinguished by the absence of Stx, the characteristic virulence hallmark of Stx-producing E. coli (STEC). Such atypical isolates either never acquired Stx-phages or may have secondarily lost stx during the course of infection, isolation, or routine subculture; the latter are commonly referred to as LST (Lost Shiga Toxin)-isolates. In this study we analyzed the genomes of 15 NSF O157:H7 and SF O157:NM strains from North America, Europe, and Asia that are characterized by the absence of stx, the virulence hallmark of STEC. The individual genomic basis of the Stx (-) phenotype has remained largely undetermined as the majority of STEC genomes in public genome repositories were generated using short read technology and are in draft stage, posing a major obstacle for the high-resolution whole genome sequence typing (WGST). The application of LRT (long-read technology) sequencing provided us with closed genomes, which proved critical to put the atypical non-shigatoxigenic NSF O157:H7 and SF O157:NM strains into the phylogenomic context of the stepwise evolutionary model. Availability of closed chromosomes for representative Stx (-) NSF O157:H7 and SF O157:NM strains allowed to describe the genomic basis and individual evolutionary trajectories underlying the absence of Stx at high accuracy and resolution. The ability of LRT to recover and accurately assemble plasmids revealed a strong correlation between the strains' featured plasmid genotype and chromosomally inferred clade, which suggests the coevolution of the chromosome and accessory plasmids. The identified ancestral traits in the pSFO157 plasmid of NSF O157:H7 strain LSU-61 provided additional evidence for its intermediate status. Taken together, these observations highlight the utility of LRTs for advancing our understanding of EHEC O157:H7/NM pathogenome evolution. Insights into the genomic and phenotypic plasticity of STEC on a lineage- and genome-wide scale are foundational to improve and inform risk assessment, biosurveillance, and prevention strategies.

16.
BMC Vet Res ; 16(1): 70, 2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32087722

RESUMO

BACKGROUND: In a beef cattle facility an outbreak of abortions occurred over a 36-day period and included samples from two aborted (non-viable) fetuses and 21 post-abortion clinical cases. There are numerous etiologies, including clinical listeriosis. At the species level, Listeria monocytogenes is ubiquitous in cattle production environments, including soil, feed, and occasionally water sources, and is a common enteric resident of cattle and other mammals. There are four genetically distinct lineages of L. monocytogenes (I-IV), with most lineage III and IV isolates obtained from ruminants. Definitive diagnosis of L. monocytogenes as a causative agent in disease outbreaks relies upon case identification, appropriate sample collection, and laboratory confirmation. Furthermore, clearly establishing a relationship between a pathogen source and clinical disease is difficult. RESULTS: Of the two fetal and 21 clinical case submissions, 19 were positive for L. monocytogenes. Subsequent culture for L. monocytogenes from water and silage sources identified both as potential origins of infection. Using whole-genome sequencing and phylogenetic analyses, clinical, water and silage L. monocytogenes strains grouped into two of four lineages. All water and silage strains, plus 11 clinical strains placed in lineage III, with identical or nearly identical genomic sequences. The remaining eight clinical strains placed in lineage I, with seven having nearly identical sequences and one distinctly different. CONCLUSION: Three genetically distinct strains within two lineages of L. monocytogenes caused the abortion outbreak. The etiology of abortion in 11 cases was directly linked to water and silage contamination from a lineage III L. monocytogenes strain. The source of infection for the remaining abortion cases with two different strains from lineage I is unknown. This is the first report of L. monocytogenes genomics being used as part of an outbreak investigation of cattle abortion.


Assuntos
Aborto Animal/microbiologia , Listeria monocytogenes/classificação , Listeria monocytogenes/isolamento & purificação , Listeriose/veterinária , Aborto Animal/epidemiologia , Animais , Bovinos , Surtos de Doenças/veterinária , Feminino , Genoma Bacteriano , Listeria monocytogenes/genética , Listeriose/epidemiologia , Nebraska/epidemiologia , Gravidez , Silagem/microbiologia , Microbiologia da Água , Sequenciamento Completo do Genoma
17.
Genome Biol Evol ; 12(2): 3850-3856, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32011709

RESUMO

Arcobacter species are recovered from a wide variety of sources, including animals, food, and both fresh and marine waters. Several Arcobacter species have also been recovered from human clinical samples and are thus associated tentatively with food- and water-borne human illnesses. Genome sequencing of the poultry isolate Arcobacter cibarius H743 and the Arcobacter acticola, Arcobacter pacificus, and Arcobacter porcinus type strains identified a large number and variety of insertion sequences. This study presents an analysis of these A. acticola, A. cibarius, A. pacificus, and A. porcinus IS elements. The four genomes sequenced here contain 276 complete and degenerate IS elements, representing 13 of the current 29 prokaryotic IS element families. Expansion of the analysis to include 15 other previously sequenced Arcobacter spp. added 73 complete and degenerate IS elements. Several of these IS elements were identified in two or more Arcobacter species, suggesting movement by horizontal gene transfer between the arcobacters. These IS elements are putatively associated with intragenomic deletions and inversions, and tentative movement of antimicrobial resistance genes. The A. cibarius strain H743 megaplasmid contains multiple IS elements common to the chromosome and, unusually, a complete ribosomal RNA locus, indicating that larger scale genomic rearrangements, potentially resulting from IS element-mediated megaplasmid cointegration and resolution may be occurring within A. cibarius and possibly other arcobacters. The presence of such a large and varied suite of mobile elements could have profound effects on Arcobacter biology and evolution.


Assuntos
Arcobacter/genética , Sequências Repetitivas Dispersas/genética , Sequenciamento Completo do Genoma/métodos , Elementos de DNA Transponíveis/genética , Filogenia , RNA Ribossômico/genética
18.
Sci Rep ; 10(1): 1633, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31988470

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

20.
Sci Rep ; 9(1): 18087, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792233

RESUMO

The virulence and pathogenicity of bacterial pathogens are related to their adaptability to changing environments. One process enabling adaptation is based on minor changes in genome sequence, as small as a few base pairs, within segments of genome called simple sequence repeats (SSRs) that consist of multiple copies of a short sequence (from one to several nucleotides), repeated in series. SSRs are found in eukaryotes as well as prokaryotes, and length variation in them occurs at frequencies up to a million-fold higher than bacterial point mutations through the process of slipped strand mispairing (SSM) by DNA polymerase during replication. The characterization of SSR length by standard sequencing methods is complicated by the appearance of length variation introduced during the sequencing process that obscures the lower abundance repeat number variants in a population. Here we report a computational approach to correct for sequencing process-induced artifacts, validated for tetranucleotide repeats by use of synthetic constructs of fixed, known length. We apply this method to a laboratory culture of Histophilus somni, prepared from a single colony, and demonstrate that the culture consists of populations of distinct sequence phase and length variants at individual tetranucleotide SSR loci.


Assuntos
Bactérias/genética , Genoma Bacteriano , Repetições de Microssatélites , Mapeamento Cromossômico/métodos , DNA Bacteriano/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pasteurellaceae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...