Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(10): e2205223, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36683230

RESUMO

Breast cancer cell colonization of the lungs is associated with a dismal prognosis as the distributed nature of the disease and poor permeability of the metastatic foci challenge the therapeutic efficacy of small molecules, antibodies, and nanomedicines. Taking advantage of the unique physiology of the pulmonary circulation, here, micro-combinatorial hydrogel particles (µCGP) are realized via soft lithographic techniques to enhance the specific delivery of a cocktail of cytotoxic nanoparticles to metastatic foci. By cross-linking short poly(ethylene glycol) (PEG) chains with erodible linkers within a shape-defining template, a deformable and biodegradable polymeric skeleton is realized and loaded with a variety of therapeutic and imaging agents, including docetaxel-nanoparticles. In a model of advanced breast cancer lung metastasis, µCGP amplified the colocalization of docetaxel-nanoparticles with pulmonary metastatic foci, prolonged the retention of chemotoxic molecules at the diseased site, suppressed lesion growth, and boosted survival beyond 20 weeks post nodule engraftment. The flexible design and modular architecture of µCGP would allow the efficient deployment of complex combination therapies in other vascular districts too, possibly addressing metastatic diseases of different origins.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias Pulmonares , Humanos , Feminino , Docetaxel , Hidrogéis , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico
2.
J Med Chem ; 60(13): 5800-5815, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28603987

RESUMO

Acid ceramidase (AC) hydrolyzes ceramides, which are central lipid messengers for metabolism and signaling of sphingolipids. A growing body of evidence links deregulation of sphingolipids to several diseases, including cancer. Indeed, AC expression is abnormally high in melanoma cells. AC inhibition may thus be key to treating malignant melanoma. Here, we have used a systematic scaffold exploration to design a general pharmacophore for AC inhibition. This pharmacophore comprises a 6 + 5 fused ring heterocycle linked to an aliphatic substituent via a urea moiety. We have thus identified the novel benzimidazole derivatives 10, 21, 27, and 30, which are highly potent AC inhibitors. Their chemical and metabolic stabilities are comparable or superior to those of previously reported AC inhibitors. Moreover, they are potent against endogenous AC in intact melanoma cells. These novel inhibitors merit further characterization and can serve as a promising starting point for the discovery of new antimelanoma therapeutics.


Assuntos
Ceramidase Ácida/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzimidazóis/química , Benzimidazóis/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ceramidase Ácida/metabolismo , Animais , Antineoplásicos/sangue , Benzimidazóis/sangue , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Estabilidade de Medicamentos , Inibidores Enzimáticos/sangue , Células HEK293 , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Camundongos
3.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(5): 441-451, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28088576

RESUMO

Human monoacylglycerol lipase (MAGL) is a membrane-interacting enzyme that generates pro-inflammatory signaling molecules. For this reason, MAGL inhibition is a promising strategy to treat pain, cancer, and neuroinflammatory diseases. MAGL can hydrolyze monoacylglycerols bearing an acyl chain of different lengths and degrees of unsaturation, cleaving primarily the endocannabinoid 2-arachidonoylglycerol. Importantly, the enzymatic binding site of MAGL is confined by a 75-amino-acid-long, flexible cap domain, named 'lid domain', which is structurally similar to that found in several other lipases. However, it is unclear how lid domain plasticity affects catalysis in MAGL. By integrating extensive molecular dynamics simulations and free-energy calculations with mutagenesis and kinetic experiments, we here define a lid-domain-mediated mechanism for substrate selection and binding in MAGL catalysis. In particular, we clarify the key role of Phe159 and Ile179, two conserved residues within the lid domain, in regulating substrate specificity in MAGL. We conclude by proposing that other structurally related lipases may share this lid-domain-mediated mechanism for substrate specificity.


Assuntos
Monoacilglicerol Lipases/química , Monoacilglicerol Lipases/metabolismo , Monoglicerídeos/química , Catálise , Inibidores Enzimáticos/química , Humanos , Cinética , Simulação de Dinâmica Molecular , Monoacilglicerol Lipases/genética , Monoglicerídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Especificidade por Substrato
4.
J Mass Spectrom ; 49(9): 894-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25230186

RESUMO

Triacylglycerols are responsible for chocolate's peculiar melting behavior: the type and position of fatty acids on the glycerol molecule strongly affect the melting range of cocoa butter. For this reason, the characterization of triglyceride composition in cocoa products is particularly important. In this work, triacylglycerols extracted from cocoa liquor samples were analyzed by matrix-assisted laser desorption/ionization time-of-flight (TOF) and electrospray ionization tandem mass spectrometry (MS/MS) coupled to liquid chromatography. Extracted samples were initially analyzed by direct injection in MS to obtain information on triglyceride molecular weights; relevant MS parameters were optimized, and the possible formation of the adducts [M + Na](+) and [M + NH(4)](+) was studied. Tandem mass experiments (both with triple quadrupole and TOF/TOF) were performed to study the fragmentation pathways (in particular, the loss of palmitic, stearic and oleic acid) and identify the triacylglycerols in cocoa liquors. Some signals of the spectra obtained with both MS techniques could indicate the presence of diacylglycerols in the cocoa extract, but different experimental evidences demonstrated that they were generated by the in-source fragmentation of triglycerides. A nonaqueous reversed-phase chromatographic separation was also developed and used to support the identification of the analytes; nine triacylglycerols were recognized in the cocoa liquor extracts. The three different batches of Ecuador cocoa liquor did not show significant differences in the triacylglycerol profile.

5.
Talanta ; 120: 30-3, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24468338

RESUMO

A calibration system for POCIS was developed and used to calculate the sampling rates of eight analytes belonging to pesticides, non-steroidal anti-inflammatory drugs and perfluorinated compounds: atrazine, propazine, terbutylazine, diclofenac, ibuprofen, ketoprofen, perfluorooctanoic acid and perfluorooctanesulfonate. Experiments with a linear velocity of 2.0, 5.1, 10.2 and 15.3 cm/s were carried out for 96 h using two different analyte concentrations. POCIS extracts were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), using multiple reaction monitoring to maximize sensitivity. Results highlighted that the calculated sampling rates are rather constant at the considered concentrations and flow rates. Obtained values of sampling rates were then employed to calculate Time-Weighted Average concentration of the analytes in river and drinking waters.


Assuntos
Anti-Inflamatórios não Esteroides/análise , Monitoramento Ambiental/instrumentação , Fluorocarbonos/análise , Praguicidas/análise , Poluentes Químicos da Água/análise , Calibragem , Água Potável/análise , Desenho de Equipamento , Limite de Detecção , Rios/química , Espectrometria de Massas em Tandem/instrumentação
6.
J Mass Spectrom ; 47(9): 1191-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22972787

RESUMO

Flavor is one of the most important characteristics of chocolate products and is due to a complex volatile fraction, depending both on the cocoa bean genotype and the several processes occurring during chocolate production (fermentation, drying, roasting and conching). Alkylpyrazines are among the most studied volatiles, being one of the main classes of odorant compounds in cocoa products. In this work, a mass spectrometric approach was used for the comparison of cocoa liquors from different countries. A headspace solid-phase microextraction gas chromatography-mass spectrometry method was developed for the qualitative study of the volatile fraction; the standard addition method was then used for the quantitative determination of five pyrazines (2-methylpyrazine, 2,3-dimethylpyrazine, 2,5-dimethylpyrazine, 2,3,5-trimethylpyrazine and tetramethylpyrazine). Satisfactory figures of merit were obtained: Limits of quantitation were in the range 0.1-2.7 ng/g; repeatability and reproducibility varied between 3% and 7% and between 8% and 14%, respectively. The total content of the pyrazines was remarkably different in the considered samples, ranging from 99 to 708 ng/g. Tetramethylpyrazine showed the highest concentration in all samples, with a maximum value of 585 ng/g. A preliminary study was also performed on the nonvolatile fraction using LC-MS/MS, identifying some flavanols such as catechin, epicatechin and procyanidins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...