Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Scand J Med Sci Sports ; 34(6): e14681, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38881390

RESUMO

BACKGROUND: Neuromuscular function is considered as a determinant factor of endurance performance during adulthood. However, whether endurance training triggers further neuromuscular adaptations exceeding those of growth and maturation alone over the rapid adolescent growth period is yet to be determined. OBJECTIVE: The present study investigated the concurrent role of growth, maturation, and endurance training on neuromuscular function through a 9-month training period in adolescent triathletes. METHODS: Thirty-eight 13- to 15-year-old males (23 triathletes [~6 h/week endurance training] and 15 untrained [<2 h/week endurance activity]) were evaluated before and after a 9-month triathlon training season. Maximal oxygen uptake (V̇O2max) and power at V̇O2max were assessed during incremental cycling. Knee extensor maximal voluntary isometric contraction torque (MVCISO) was measured and the voluntary activation level (VAL) was determined using the twitch interpolation technique. Knee extensor doublet peak torque (T100Hz) and normalized vastus lateralis (VL) electromyographic activity (EMG/M-wave) were also determined. VL and rectus femoris (RF) muscle architecture was assessed using ultrasonography. RESULTS: Absolute V̇O2max increased similarly in both groups but power at V̇O2max only significantly increased in triathletes (+13.8%). MVCISO (+14.4%), VL (+4.4%), and RF (+15.8%) muscle thicknesses and RF pennation angle (+22.1%) increased over the 9-month period in both groups similarly (p < 0.01), although no changes were observed in T100Hz, VAL, or VL EMG/M-wave. No changes were detected in any neuromuscular variables, except for coactivation. CONCLUSION: Endurance training did not induce detectible, additional neuromuscular adaptations. However, the training-specific cycling power improvement in triathletes may reflect continued skill enhancement over the training period.


Assuntos
Adaptação Fisiológica , Eletromiografia , Treino Aeróbico , Contração Isométrica , Consumo de Oxigênio , Torque , Humanos , Masculino , Adolescente , Estudos Longitudinais , Consumo de Oxigênio/fisiologia , Contração Isométrica/fisiologia , Músculo Quadríceps/fisiologia , Músculo Quadríceps/diagnóstico por imagem , Resistência Física/fisiologia , Ciclismo/fisiologia , Músculo Esquelético/fisiologia , Joelho/fisiologia , Ultrassonografia , Força Muscular/fisiologia , Atletas , Natação/fisiologia
2.
J Strength Cond Res ; 38(1): 21-29, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085619

RESUMO

ABSTRACT: Bontemps, B, Gruet, M, Louis, J, Owens, DJ, Miríc, S, Vercruyssen, F, and Erskine, RM. Patellar tendon adaptations to downhill running training and their relationships with changes in mechanical stress and loading history. J Strength Cond Res 38(1): 21-29, 2024-It is unclear whether human tendon adapts to moderate-intensity, high-volume long-term eccentric exercise, e.g., downhill running (DR) training. This study aimed to investigate the time course of patellar tendon (PT) adaptation to short-term DR training and to determine whether changes in PT properties were related to changes in mechanical stress or loading history. Twelve untrained, young, healthy adults (5 women and 7 men) took part in 4 weeks' DR training, comprising 10 sessions. Running speed was equivalent to 60-65% V̇O2max, and session duration increased gradually (15-30 minutes) throughout training. Isometric knee extensor maximal voluntary torque (MVT), vastus lateralis (VL) muscle physiological cross-sectional area (PCSA) and volume, and PT CSA, stiffness, and Young's modulus were assessed at weeks 0, 2, and 4 using ultrasound and isokinetic dynamometry. Patellar tendon stiffness (+6.4 ± 7.4%), Young's modulus (+6.9 ± 8.8%), isometric MVT (+7.5 ± 12.3%), VL volume (+6.6 ± 3.2%), and PCSA (+3.8 ± 3.3%) increased after 4 weeks' DR (p < 0.05), with no change in PT CSA. Changes in VL PCSA correlated with changes in PT stiffness (r = 0.70; p = 0.02) and Young's modulus (r = 0.63; p = 0.04) from 0 to 4 weeks, whereas changes in MVT did not correlate with changes in PT stiffness and Young's modulus at any time point (p > 0.05). To conclude, 4 weeks' DR training promoted substantial changes in PT stiffness and Young's modulus that are typically observed after high-intensity, low-volume resistance training. These tendon adaptations seemed to be driven primarily by loading history (represented by VL muscle hypertrophy), whereas increased mechanical stress throughout the training period did not seem to contribute to changes in PT stiffness or Young's modulus.


Assuntos
Ligamento Patelar , Corrida , Masculino , Adulto , Humanos , Feminino , Ligamento Patelar/diagnóstico por imagem , Ligamento Patelar/fisiologia , Estresse Mecânico , Força Muscular/fisiologia , Fenômenos Biomecânicos , Módulo de Elasticidade/fisiologia , Músculo Esquelético/fisiologia
3.
Int J Sports Physiol Perform ; 17(10): 1499-1506, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35894825

RESUMO

PURPOSE: The aim of this study was to investigate the time course of maximal isometric finger flexor force and blood acid-base balance during repeated simulated matches in world-class judokas. METHODS: Seven 21- to 28-year-old world-class female judokas (including Olympic and World Championship medalists) repeated four 4-minute judo combats interspersed by 15 minutes of passive recovery. Maximal voluntary isometric finger flexor contraction (MVIC) force was measured in both hands after warm-up and immediately after each combat using a handgrip dynamometer. MVIC force was classified as MVIC hikite force (pulling hand) and MVIC tsurite force (lifting hand). RESULTS: Blood lactate concentration, pH, bicarbonate concentration, partial pressure of oxygen, and oxygen saturation were measured between 3 and 5 minutes after each match. At completion of the fourth combat, mean MVIC hikite and tsurite force decreased by 18% and 12%, respectively (g = 0.23 and 0.29, respectively; P < .05), demonstrating that force production was substantial throughout repeated matches. Blood lactate concentration increased ∼5-fold from 2.69 (1.37) mmol·L-1 after warm-up to 13.10 (2.61) mmol·L-1 after the last match (g = 4.13, P = .018). Concurrently, blood pH decreased slightly from 7.44 (0.03) to 7.26 (0.05) (g = 2.34, P = .018), that is, by only 0.18 units. The decreased blood pH was significantly correlated with a decrease in bicarbonate concentration (R2 = .94, P < .001). Finally, partial pressure of oxygen and oxygen saturation remained unchanged during the judo contest. CONCLUSIONS: Female world-class judokas were able to maintain a high level of grip strength in both hands and efficiently regulate blood acid-base balance during repeated simulated high-intensity matches.


Assuntos
Equilíbrio Ácido-Base , Força da Mão , Adulto , Bicarbonatos , Feminino , Força da Mão/fisiologia , Humanos , Contração Isométrica , Ácido Láctico , Oxigênio , Adulto Jovem
4.
Eur J Appl Physiol ; 122(4): 1071-1084, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35182181

RESUMO

PURPOSE: Due to its eccentric nature, downhill running (DR) training has been suggested to promote strength gains through neuromuscular adaptations. However, it is unknown whether short-term chronic DR can elicit such adaptations. METHODS: Twelve untrained, young, healthy adults (5 women, 7 men) took part in 4 weeks' DR, comprising 10 sessions, with running speed equivalent to 60-65% maximal oxygen uptake ([Formula: see text]O2max, assessed at weeks 0 and 4). Isometric and isokinetic knee-extensor maximal voluntary torque (MVT), vastus lateralis (VL) muscle morphology/architecture (anatomical cross-sectional area, ACSA; physiological CSA, PCSA; volume; fascicle length, Lf; pennation angle, PA) and neuromuscular activation (VL EMG) were assessed at weeks 0, 2 and 4. RESULTS: MVT increased by 9.7-15.2% after 4 weeks (p < 0.01). VL EMG during isometric MVT increased by 35.6 ± 46.1% after 4 weeks (p < 0.05) and correlated with changes in isometric MVT after 2 weeks (r = 0.86, p = 0.001). VL ACSA (+2.9 ± 2.7% and +7.1 ± 3.5%) and volume (+2.5 ± 2.5% and +6.6 ± 3.2%) increased after 2 and 4 weeks, respectively (p < 0.05). PCSA (+3.8 ± 3.3%), PA (+5.8 ± 3.8%) and Lf (+2.7 ± 2.2%) increased after 4 weeks (p < 0.01). Changes in VL volume (r = 0.67, p = 0.03) and PCSA (r = 0.71, p = 0.01) correlated with changes in concentric MVT from 2 to 4 weeks. [Formula: see text]O2max (49.4 ± 6.2 vs. 49.7 ± 6.3 mL·kg-1·min-1) did not change after 4 weeks (p = 0.73). CONCLUSION: Just 4 weeks' moderate-intensity DR promoted neuromuscular adaptations in young, healthy adults, typically observed after high-intensity eccentric resistance training. Neural adaptations appeared to contribute to most of the strength gains at 2 and 4 weeks, while muscle hypertrophy seemed to contribute to MVT changes from 2 to 4 weeks only.


Assuntos
Treinamento Resistido , Corrida , Adaptação Fisiológica/fisiologia , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Torque
5.
PLoS One ; 16(5): e0251282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33956901

RESUMO

BACKGROUND: Thanks to the specific materials they embed, far infrared (FIR)-emitting garments can interact with the body's physiological functions. Such effects have been sought in medicine and physiotherapy for a long time for the treatment/relief of a variety of pathologies and disabling conditions. Recently, FIR-emitting garments have been introduced in the sporting domain under the influence of manufacturers seeing here a new opportunity to support physical performance in athletes, though this is not clearly established. To fill this gap, in this systematic review, we summarize the scientific evidence on the use of FIR-emitting garments in sport and provide directions for future research by shedding light on current scientific limitations. METHOD: Five scientific databases (PubMed, Cochrane, ScienceDirect, Scopus and SPORTDiscus) were searched by two independent reviewers. Studies investigating the effects of FIR-emitting garments on at least one physiological outcome related to exercise performance and/or recovery in humans were selected. The methodological quality of retained studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. RESULTS AND DISCUSSION: Eleven studies met the inclusion criteria and were included in the systematic review. Studies investigating similar outcomes related to exercise performance or recovery were scarce and results inconclusive, which prevents from drawing firm conclusion about the utilisation of FIR-emitting garments in athletes. However, these early results show that FIR-emitting garments may be of interest for exercise performance and recovery, mainly through their effects on the body's thermoregulation and haemodynamic function. The summary provided in this review can be used to inform the design of future studies. (PROSPERO registration number: CRD42021238029).


Assuntos
Desempenho Atlético , Vestuário , Raios Infravermelhos , Esportes , Dispositivos Eletrônicos Vestíveis , Desempenho Atlético/fisiologia , Exercício Físico/fisiologia , Humanos , Esportes/fisiologia
6.
Int J Dev Neurosci ; 81(3): 270-276, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33617682

RESUMO

The aim of the present study was to check whether the M-wave and H-reflex recruitment curves differ between prepubertal boys and men. Eleven boys (9-11 yr) and eleven men (18-35 yr) were magnetically stimulated at the tibial nerve in a prone position. M-wave and H-reflex maximal amplitudes (Hmax; Mmax ; Hmax /Mmax ), thresholds, regression slopes (Hslp ; Mslp ; Hslp /Mslp ) were extracted from M-wave and H-reflex recruitment curves and compared between the two age groups. Overall, no significant difference in M-wave and H-reflex recruitment curve parameters was found between the two populations. Nevertheless, the size of the M-wave associated with maximal H-reflex amplitude was lower in boys as compared to men when expressed relative to maximal M-wave amplitude (MHmax /Mmax : 0.18 ± 0.06 vs. 0.31 ± 0.13; p < .05). This result suggests that the development of peripheral nerve was completed in 9 to 11-year-old boys and did not affect the M-wave and H-reflex recruitment curves parameters. In neuromuscular function studies, it implies that Hmax /Mmax and Hslp /Mslp could be used indifferently to compare spinal motoneuron excitability between 9-11-year-old boys and men. Conversely, evoking H-reflexes at a given percentage of Mmax may bias the comparison between boys and men.


Assuntos
Reflexo H/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Recrutamento Neurofisiológico/fisiologia , Adolescente , Adulto , Criança , Estimulação Elétrica , Eletromiografia , Humanos , Masculino , Adulto Jovem
7.
Artigo em Inglês | MEDLINE | ID: mdl-33345004

RESUMO

Retraining and resuming competition following surgery is challenging for athletes due to the prolonged period of reduced physical activity and subsequent alteration of body composition and physical performance. This is even more challenging for master athletes who endure the additional effect of aging. Within this context, the purpose of this study was to evaluate the feasibility and benefits that evidence-based nutritional and training recommendations could have on the time course of reconditioning and retraining following hip arthroplasty in an endurance master triathlete. During 38 weeks (from 6 weeks prior to surgery through to the return to competition in week 32), the athlete was provided with detailed training and nutritional recommendations. Dietary intake (via the remote food photographic method), body composition (via DXA), peak oxygen uptake (VO2peak), peak power output (PPO), cycling efficiency (GE), and energy availability (EA) were assessed 6 weeks pre- and 8, 12, 18, 21, and 25-weeks post-surgery. Training load was quantified (via TRIMP score and energy expenditure) daily during the retraining. Total body mass increased by 8.2 kg (attributable to a 3.5-4.6 kg increase in fat mass and lean mass, respectively) between week -6 and 8 despite a reduction in carbohydrate (CHO) intake post-surgery (<3.0 g/kg body mass/day). This was accompanied with a decrease in VO2peak, PPO, and GE due to a drop in training load. From week 7, the athlete resumed training and was advised to increase gradually CHO intake according to the demands of training. Eventually the athlete was able to return to competition in week 32 with a higher PPO, improved VO2peak, and GE. Throughout retraining, EA was maintained around 30 kcal/kg Lean Body Mass/day, protein intake was high (~2 g/kg/day) while CHO intake was periodized. Such dietary conditions allowed the athlete to maintain and even increase lean mass, which represents a major challenge with aging. Data reported in this study show, for the first time, the conditions required to recover and return to endurance competition following hip surgery.

8.
Sports Med ; 50(12): 2083-2110, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33037592

RESUMO

Downhill running (DR) is a whole-body exercise model that is used to investigate the physiological consequences of eccentric muscle actions and/or exercise-induced muscle damage (EIMD). In a sporting context, DR sections can be part of running disciplines (off-road and road running) and can accentuate EIMD, leading to a reduction in performance. The purpose of this narrative review is to: (1) better inform on the acute and delayed physiological effects of DR; (2) identify and discuss, using a comprehensive approach, the DR characteristics that affect the physiological responses to DR and their potential interactions; (3) provide the current state of evidence on preventive and in-situ strategies to better adapt to DR. Key findings of this review show that DR may have an impact on exercise performance by altering muscle structure and function due to EIMD. In the majority of studies, EIMD are assessed through isometric maximal voluntary contraction, blood creatine kinase and delayed onset muscle soreness, with DR characteristics (slope, exercise duration, and running speed) acting as the main influencing factors. In previous studies, the median (25th percentile, Q1; 75th percentile, Q3) slope, exercise duration, and running speed were - 12% (- 15%; - 10%), 40 min (30 min; 45 min) and 11.3 km h-1 (9.8 km h-1; 12.9 km h-1), respectively. Regardless of DR characteristics, people the least accustomed to DR generally experienced the most EIMD. There is growing evidence to suggest that preventive strategies that consist of prior exposure to DR are the most effective to better tolerate DR. The effectiveness of in-situ strategies such as lower limb compression garments and specific footwear remains to be confirmed. Our review finally highlights important discrepancies between studies in the assessment of EIMD, DR protocols and populations, which prevent drawing firm conclusions on factors that most influence the response to DR, and adaptive strategies to DR.


Assuntos
Músculo Esquelético , Mialgia , Corrida , Humanos , Contração Isométrica
10.
J Appl Physiol (1985) ; 128(2): 440-444, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31917623

RESUMO

The aim of this study was to examine the physiological profiles and the pacing strategies of the father (59 yr old) and son (34 yr old) who broke the World Record time (4:59:22; father: 2:27:52, son: 2:31:30) for combined father and son marathon in 2019. Oxygen uptake (V̇o2), heart rate (HR), ventilation (V̇e), blood lactate concentration (La), and running economy (RE) were measured during treadmill-running tests. The total distance of the marathon was divided into eight sections of 5 km and one last section of 2.195 km, and the relative average running velocity on each section was calculated individually. V̇o2max, HRmax, V̇emax, and Lamax were 65.4 mL·kg-1·min-1, 165 beats/min, 115 L/min, 5.7 mmol/L for the father and 66.9 mL·kg-1·min-1, 181 beats/min, 153 L/min, 11.5 mmol/L for the son, respectively. At 17 km/h, RE was 210 mL·kg-1·km-1 for the father and 200 mL·kg-1·km-1 for the son, and % V̇o2max sustained was 90.9% for the father and 84.5% for the son, respectively. The father maintained an even running velocity during the marathon (running velocity CV <1%), while the son ran the second half-marathon 7% slower than the first one, and his running velocity markedly dropped from the 35th kilometer. Father and son who broke the World record time for combined father and son marathon had a similar level of performance, but their physiological profiles and pacing strategies during the marathon were different. A more even speed for the son could help them to improve their own record in the near future.NEW & NOTEWORTHY We provide novel data demonstrating that different physiological profiles can lead to the same level of performance in a marathon, even at different ages. The novelty of our study is that we report on the physiological characteristics, training routine, and in-race pacing strategy that allowed a father (59 yr old) and son (34 yr old) to break the World Record time for combined father and son marathon. The father also established a new World record marathon time for the age of 59.


Assuntos
Desempenho Atlético , Corrida de Maratona , Resistência Física , Pai , Humanos , Masculino , Consumo de Oxigênio
11.
Eur J Appl Physiol ; 120(3): 653-664, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31980900

RESUMO

PURPOSE: The twofold purpose of this study was (1) to compare differences in development and etiology of neuromuscular fatigue at different plantar flexor (PF) muscle-tendon unit (MTU) lengths between boys and men, and (2) to examine the relationship between musculotendinous stiffness and peripheral fatigue. METHODS: Nineteen pre-pubertal boys and 23 men performed three intermittent fatigue protocols at different PF MTU lengths (short: S, neutral: N and long: L), consisting of repeating maximal voluntary isometric contractions (MVIC) until the torque reached 60% of the initial value of MVIC. The etiology of the neuromuscular fatigue and the gastrocnemius medialis aponeuroses and tendon stiffness (KGM) were investigated using non-invasive methods. RESULT: The number of repetitions did not differ between men and boys, regardless of the PF MTU length (S: 16.5 ± 5.4 and 17.6 ± 5.8; N: 15.8 ± 4.5 and 13.3 ± 3.6; L: 13.6 ± 4.8 and 12.6 ± 4.6, respectively). Boys displayed a lower decrement of potentiated twitch torque (Qtwpot; p < 0.001) and greater decrease of voluntary activation level than men (p < 0.001). Although boys showed lower KGM values than men at S, no significant correlation was found between KGM and Qtwpot. CONCLUSION: PF MTU length had no effect on differences in the development and etiology of neuromuscular fatigue between boys and men. Although both groups displayed similar development of fatigue, central mechanisms mainly accounted for fatigue in boys and peripheral mechanisms were mainly involved in men. Additionally, musculotendinous stiffness did not account for difference in peripheral fatigue between children and adults.


Assuntos
Envelhecimento/fisiologia , Fadiga Muscular , Músculo Esquelético/fisiologia , Tendões/fisiologia , Adolescente , Aponeurose/fisiologia , Criança , Humanos , Contração Isométrica , Masculino , Torque , Adulto Jovem
12.
Med Sci Sports Exerc ; 52(3): 623-626, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31652243

RESUMO

PURPOSE: This study assessed the cardiorespiratory capacity and running economy (RE) of a 59-yr-old ex-Olympian athlete who ran a marathon in 2:30:15 in 2019. The athlete retired from running at 32 yr old (best marathon performance: 2:13:59) for a 16-yr period after his participation at the Olympics. METHODS: Heart rate (HR), oxygen uptake (V˙O2), ventilation (VE), blood lactate concentration (La), step frequency, and RE were measured during a treadmill-running test. RESULTS: His HRmax, VEmax, Lamax, and V˙O2max were 165 bpm, 115 L·min, 5.7 mmol·L, and 65.4 mL·kg·min, respectively. At his marathon pace, his RE was 210 mL·kg·min with a step frequency of 199 ± 0.55 s·min, and his V˙O2 corresponded to 91% of his V˙O2max. CONCLUSION: This study shows that despite a 16-yr break in training, this 59-yr-old former Olympian marathoner has managed to limit the age-related decline in performance to ~5% per decade. More generally, these data suggest that high-level endurance masters athletes can limit the age-related decline in endurance performance at least until the age of 60 yr and can preserve their ability to sustain high-intensity effort (>90% of V˙O2max) for long-duration (2-3 h) exercises.


Assuntos
Envelhecimento/fisiologia , Aptidão Cardiorrespiratória/fisiologia , Resistência Física/fisiologia , Corrida/fisiologia , Metabolismo Energético/fisiologia , Frequência Cardíaca/fisiologia , Humanos , Ácido Láctico/sangue , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio/fisiologia , Respiração
14.
Med Sci Sports Exerc ; 51(9): 1961-1970, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31415444

RESUMO

PURPOSE: The purpose of this study was to compare the development and etiology of neuromuscular fatigue of the knee extensor muscles at different muscle-tendon unit (MTU) lengths during repeated maximal voluntary isometric contractions (MVIC) between boys and men. METHODS: Twenty-two prepubertal boys (9-11 yr) and 22 men (18-30 yr) performed three knee extensor fatigue protocols at short (SHORT), optimal (OPT), and long (LONG) MTU lengths, consisting of repeating 5-s MVIC interspersed with 5-s passive recovery periods until torque reached 60% of the initial MVIC torque. The etiology of neuromuscular fatigue was identified using noninvasive methods such as surface electromyography, near-infrared spectroscopy, magnetic nerve stimulation and twitch interpolation technique. RESULTS: The number of repetitions was significantly lower in men at OPT (14.8 ± 3.2) and LONG (15.8 ± 5.8) than boys (39.7 ± 18.4 and 29.5 ± 10.2, respectively; P < 0.001), whereas no difference was found at SHORT between both age groups (boys, 33.7 ± 15.4; men, 40.9 ± 14.2). At OPT and LONG boys showed a lower reduction in the single potentiated twitch (Qtwpot) and a greater decrease in the voluntary activation level than men. At SHORT, both populations displayed a moderate Qtwpot decrement and a significant voluntary activation reduction (P < 0.001). The differences in maximal torque between boys and men were almost twice greater at OPT (223.9 N·m) than at SHORT (123.3 N·m) and LONG (136.5 N·m). CONCLUSIONS: The differences in neuromuscular fatigue between children and adults are dependent on MTU length. Differences in maximal torque could underpin differences in neuromuscular fatigue between children and adults at OPT and SHORT. However, at LONG these differences do not seem to be explained by differences in maximal torque. The origins of this specific effect of MTU length remain to be determined.


Assuntos
Contração Isométrica/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Tendões/fisiologia , Adolescente , Adulto , Criança , Eletromiografia , Humanos , Joelho/fisiologia , Magnetismo , Músculo Esquelético/inervação , Torque , Adulto Jovem
15.
Exp Brain Res ; 237(5): 1289-1302, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30859239

RESUMO

The aim of this study was to compare voluntary activation (VA) and motor units (MU) recruitment patterns between boys and men at different contraction levels of the knee extensor muscles. We hypothesized that boys and men would display similar VA and MU recruitment patterns at low submaximal force levels, but that boys would display a lower utilization of their higher-threshold MU and a lower VA at near-maximal and maximal force levels than men. 11 prepubertal boys and 13 men were tested at the optimal knee angle. Next, VA was assessed using the twitch interpolation technique during maximal (MVC) and submaximal isometric voluntary contractions. Mean firing rate (MFR), recruitment threshold (RT) and motor unit action potential size (MUAPSIZE) were extracted to characterize neural strategies. No significant difference between groups was found for VA at every contraction level. Similarly, no significant difference was found for the MFR vs. RT relationship parameters between groups. For the vastus lateralis (VL) muscle, the MUAPSIZE vs. RT relationship differed between boys and men independent of the contraction level (p < 0.05). Boys also displayed a different MFR vs. MUAPSIZE relationship on the VL muscle independent of the contraction level (p < 0.05). To conclude, no difference between boys and men was found for VA regardless of the contraction level investigated. Differences in motor unit recruitment parameters between boys and men seem to be explained by different muscle dimensions between groups.


Assuntos
Contração Isométrica/fisiologia , Músculo Quadríceps/fisiologia , Recrutamento Neurofisiológico/fisiologia , Adolescente , Adulto , Fatores Etários , Criança , Eletromiografia , Humanos , Masculino , Estimulação Física , Adulto Jovem
16.
Front Physiol ; 10: 119, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30828304

RESUMO

The present study compared neuromuscular fatigue profiles between children, untrained adults and adult endurance athletes during repeated maximal muscle contractions. Eighteen prepubertal boys, 19 untrained men and 13 endurance male athletes performed 5-s maximal voluntary isometric knee extensor contractions (MVICs) interspersed with 5-s recovery until MVIC reached 60% of its initial value. Single and doublet magnetic stimulations were delivered to the femoral nerve to quantify the time course of potentiated twitch amplitude (Ttw,pot), high-frequency torque (T100 Hz) and the low-to-high frequency torque ratio (T10 Hz/T100 Hz), i.e., indicators of peripheral fatigue. M-wave-normalized EMG amplitudes (EMG/M) and the maximal voluntary activation level (VA) were calculated to quantify central fatigue. Adults (15.9 ± 3.9 repetitions) performed fewer MVICs than children (40.4 ± 19.7) and endurance athletes (51.7 ± 19.6), however, no difference was observed between children and athletes (P = 0.13). Ttw,pot (∼52%, P < 0.001), T100 Hz (∼39%, P < 0.001) and T10 Hz/T100 Hz (∼23%, P < 0.001) decreased only in adults. Similar decrements in vastus medialis and vastus lateralis EMG/M were observed in children and endurance athletes (range: 40-50%), and these were greater than in adults (∼15%). Whilst VA decreased more in children (-38.4 ± 22.5%, P < 0.001) than endurance athletes (-20.3 ± 10.1%, P < 0.001), it did not change in adults. Thus, children fatigued more slowly than adults and as much as endurance athletes. They developed less peripheral and more central fatigue than adults and, although central fatigue appeared somewhat higher in children than endurance athletes, both children and endurance athletes experienced greater decrements than adults. Therefore, children exhibit a more comparable neuromuscular fatigue profile to endurance athletes than adults.

17.
J Appl Physiol (1985) ; 125(4): 1246-1256, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30091669

RESUMO

The aim of the present study was to compare the development and etiology of neuromuscular fatigue of the knee extensor (KE) and plantar flexor (PF) muscles during repeated maximal voluntary isometric contractions (MVICs) between children and adults. Prepubertal boys (n = 21; 9-11 yr) and men (n = 24; 18-30 yr) performed two fatigue protocols consisting of a repetition of 5-s isometric MVIC of the KE or PF muscles interspersed with 5-s passive recovery periods until MVIC reached 60% of its initial value. The etiology of neuromuscular fatigue of the KE and PF muscles was investigated by means of noninvasive methods, such as the surface electromyography, single and doublet magnetic stimulation, twitch interpolation technique, and near-infrared spectroscopy. The number of repetitions performed was significantly lower in men (15.4 ± 3.8) than boys (38.7 ± 18.8) for the KE fatigue test. In contrast, no significant difference was found for the PF muscles between boys and men (12.1 ± 4.9 and 13.8 ± 4.9 repetitions, respectively). Boys displayed a lower reduction in potentiated twitch torque, low-frequency fatigue, and muscle oxygenation than men whatever the muscle group considered. In contrast, voluntary activation level and normalized electromyography data decreased to a greater extent in boys than men for both muscle groups. To conclude, boys experienced less peripheral and more central fatigue during repeated MVICs than men whatever the muscle group considered. However, child-adult differences in neuromuscular fatigue were muscle-dependent since boys fatigued similarly to men with the PF muscles and to a lower extent with the KE muscles.NEW & NOTEWORTHY Child-adult differences in neuromuscular fatigue during repeated maximal voluntary contractions are specific to the muscle group since children fatigue similarly to adults with the plantar flexor muscles and to a lower extent with the knee extensor muscles. Children experience less peripheral fatigue and more central fatigue than adults, regardless of the muscle group considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...