Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 23(9): 991-1005, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37672713

RESUMO

Gypsum (CaSO4·2H2O) has been identified at the surface of Mars, by both orbiters and rovers. Because gypsum mostly forms in the presence of liquid water as an essential element for sustaining microbial life and has a low porosity, which is ideal for preserving organic material, it is a promising target to look for signs of past microbial life. In this article, we studied organic matter preservation within gypsum that precipitates in a salt flat or a so-called coastal sabkha located in Qatar. Sabkha's ecosystem is considered a modern analog to evaporitic environments that may have existed on early Mars. We collected the sediment cores in the areas where gypsum is formed and performed DNA analysis to characterize the community of extremophilic microorganisms that is present at the site of gypsum formation. Subsequently, we applied Raman spectroscopy, a technique available on several rovers that are currently exploring Mars, to evaluate which organic molecules can be detected through the translucent gypsum crystals. We showed that organic material can be encapsulated into evaporitic gypsum and detected via Raman microscopy with simple, straightforward sample preparation. The molecular biology data proved useful for assessing to what extent complex Raman spectra can be linked to the original microbial community, dominated by Halobacteria and methanogenic archaea, providing a reference for a signal that may be detected on Mars.


Assuntos
Euryarchaeota , Microbiota , Áreas Alagadas , Biofilmes , Sulfato de Cálcio , Análise Espectral Raman
2.
Sci Total Environ ; 902: 165820, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37506898

RESUMO

Calcium sulfate minerals are abundant in nature - on Earth and on Mars - and important in several fields of material sciences. With respect to gypsum and bassanite, anhydrite represents the anhydrous crystalline phase in the CaSO4-H2O system. Despite years of research, the formation of anhydrite in the laboratory at low temperature remains challenging and, in the geological record, this mineral is mostly interpreted as a secondary phase that form through metamorphic dehydration of gypsum. Here, we present the results of laboratory precipitation experiments showing that anhydrite can form at 35 °C from evaporated seawater through a microbially influenced mineralization process. The experiments were conducted in the presence of extracellular polymeric substances (EPS) produced by bacterial strains isolated from a modern evaporitic environment, the Dohat Faishakh sabkha in Qatar. Without organic molecules, only gypsum formed in parallel control experiments. This finding provides a possible explanation for the origin of several natural occurrences of anhydrite that cannot be satisfactorily explained by existing models and reveals a new precipitation pathway that may have industrial applications.

3.
Sci Rep ; 11(1): 4170, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33603064

RESUMO

The "Dolomite Problem" has been a controversy for over a century, owing to massive assemblages of low-temperature dolomite in ancient rocks with little dolomite forming today despite favorable geochemical conditions. Experiments show that microbes and their exopolymeric substances (EPS) nucleate dolomite. However, factors controlling ancient abundances of dolomite can still not be explained. To decode the enigma of ancient dolomite, we examined a modern dolomite forming environment, and found that a cyclic shift in microbial community between cyanobacteria and anoxygenic phototrophs creates EPS suited to dolomite precipitation. Specifically, EPS show an increased concentration of carboxylic functional groups as microbial composition cycles from cyanobacterial to anoxygenic phototroph driven communities at low-and high- salinity, respectively. Comparing these results to other low-T forming environments suggests that large turnover of organic material under anoxic conditions is an important driver of the process. Consequently, the shift in atmospheric oxygen throughout Earth's history may explain important aspects of "The Dolomite Problem". Our results provide new context for the interpretation of dolomite throughout Earth's history.

4.
RSC Adv ; 11(59): 37029-37039, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496424

RESUMO

Dolomite is a common Mg-rich carbonate in the geological record, but the mechanism of its formation remains unclear. At low temperature, the incorporation of magnesium ions into the carbonate minerals necessary to form dolomite is kinetically inhibited. Over the decades, several factors that possibly allow for overcoming this kinetic barrier have been proposed, and their effectiveness debated. Here, we present the results of a large number of laboratory precipitation experiments that have been designed to identify and compare the factors that promote the formation of Mg-rich carbonates. Under the tested conditions, the most interesting observations include: (1) from solutions that mimic evaporitic seawater, the maximum mol% of Mg incorporated in high Mg calcite is 35, (2) carbonates with a mol% of Mg above 40 were obtained exclusively in the presence of organic molecules, (3) no correlation was observed between the charge of the organic molecules and the incorporation of Mg, (4) the mode (i.e., slow vs. fast mixing) used to add carbonate to the solution obtaining supersaturation has a significant impact on the forming mineral phase (aragonite vs. nesquehonite vs. high Mg calcite) and its Mg content. These findings allow for a more informed evaluation of the existing models for dolomite formation, which are based on the study of natural environments and ancient sedimentary sequences.

5.
Geobiology ; 18(3): 306-325, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32118348

RESUMO

On the basis of phylogenetic studies and laboratory cultures, it has been proposed that the ability of microbes to metabolize iron has emerged prior to the Archaea/Bacteria split. However, no unambiguous geochemical data supporting this claim have been put forward in rocks older than 2.7-2.5 giga years (Gyr). In the present work, we report in situ Fe and S isotope composition of pyrite from 3.28- to 3.26-Gyr-old cherts from the upper Mendon Formation, South Africa. We identified three populations of microscopic pyrites showing a wide range of Fe isotope compositions, which cluster around two δ56 Fe values of -1.8‰ and +1‰. These three pyrite groups can also be distinguished based on the pyrite crystallinity and the S isotope mass-independent signatures. One pyrite group displays poorly crystallized pyrite minerals with positive Δ33 S values > +3‰, while the other groups display more variable and closer to 0‰ Δ33 S values with recrystallized pyrite rims. It is worth to note that all the pyrite groups display positive Δ33 S values in the pyrite core and similar trace element compositions. We therefore suggest that two of the pyrite groups have experienced late fluid circulations that have led to partial recrystallization and dilution of S isotope mass-independent signature but not modification of the Fe isotope record. Considering the mineralogy and geochemistry of the pyrites and associated organic material, we conclude that this iron isotope systematic derives from microbial respiration of iron oxides during early diagenesis. Our data extend the geological record of dissimilatory iron reduction (DIR) back more than 560 million years (Myr) and confirm that micro-organisms closely related to the last common ancestor had the ability to reduce Fe(III).


Assuntos
Sedimentos Geológicos , Compostos Férricos , Ferro , Isótopos , Filogenia , África do Sul , Sulfetos
6.
Sci Rep ; 9(1): 19633, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873136

RESUMO

Studies have demonstrated that microbes facilitate the incorporation of Mg2+ into carbonate minerals, leading to the formation of potential dolomite precursors. Most microbes that are capable of mediating Mg-rich carbonates have been isolated from evaporitic environments in which temperature and salinity are higher than those of average marine environments. However, how such physicochemical factors affect and concur with microbial activity influencing mineral precipitation remains poorly constrained. Here, we report the results of laboratory precipitation experiments using two mineral-forming Virgibacillus strains and one non-mineral-forming strain of Bacillus licheniformis, all isolated from the Dohat Faishakh sabkha in Qatar. They were grown under different combinations of temperature (20°, 30°, 40 °C), salinity (3.5, 7.5, 10 NaCl %w/v), and Mg2+:Ca2+ ratios (1:1, 6:1 and 12:1). Our results show that the incorporation of Mg2+ into the carbonate minerals is significantly affected by all of the three tested factors. With a Mg2+:Ca2+ ratio of 1, no Mg-rich carbonates formed during the experiments. With a Mg2+:Ca2+ ratios of 6 and 12, multivariate analysis indicates that temperature has the highest impact followed by salinity and Mg2+:Ca2+ ratio. The outcome of this study suggests that warm and saline environments are particularly favourable for microbially mediated formation of Mg-rich carbonates and provides new insight for interpreting ancient dolomite formations.


Assuntos
Carbonato de Cálcio/metabolismo , Temperatura Alta , Magnésio/metabolismo , Salinidade , Virgibacillus , Virgibacillus/crescimento & desenvolvimento , Virgibacillus/isolamento & purificação
7.
Nat Commun ; 10(1): 5646, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827091

RESUMO

The oceanic magnesium budget is important to our understanding of Earth's carbon cycle, because similar processes control both (e.g., weathering, volcanism, and carbonate precipitation). However, dolomite sedimentation and low-temperature hydrothermal circulation remain enigmatic oceanic Mg sinks. In recent years, magnesium isotopes (δ26Mg) have provided new constraints on the Mg cycle, but the lack of data for the low-temperature hydrothermal isotope fractionation has hindered this approach. Here we present new δ26Mg data for low-temperature hydrothermal fluids, demonstrating preferential 26Mg incorporation into the oceanic crust, on average by εsolid-fluid ≈ 1.6‰. These new data, along with the constant seawater δ26Mg over the past ~20 Myr, require a significant dolomitic sink (estimated to be 1.5-2.9 Tmol yr-1; 40-60% of the oceanic Mg outputs). This estimate argues strongly against the conventional view that dolomite formation has been negligible in the Neogene and points to the existence of significant hidden dolomite formation.

8.
Extremophiles ; 23(2): 201-218, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30617527

RESUMO

The Khor Al-Adaid sabkha in Qatar is among the rare extreme environments on Earth where it is possible to study the formation of dolomite-a carbonate mineral whose origin remains unclear and has been hypothetically linked to microbial activity. By combining geochemical measurements with microbiological analysis, we have investigated the microbial mats colonizing the intertidal areas of sabhka. The main aim of this study was to identify communities and conditions that are favorable for dolomite formation. We inspected and sampled two locations. The first site was colonized by microbial mats that graded vertically from photo-oxic to anoxic conditions and were dominated by cyanobacteria. The second site, with higher salinity, had mats with an uppermost photo-oxic layer dominated by filamentous anoxygenic photosynthetic bacteria (FAPB), which potentially act as a protective layer against salinity for cyanobacterial species within the deeper layers. Porewater in the uppermost layers of the both investigated microbial mats was supersaturated with respect to dolomite. Corresponding to the variation of the microbial community's vertical structure, a difference in crystallinity and morphology of dolomitic phases was observed: dumbbell-shaped proto-dolomite in the mats dominated by cyanobacteria and rhombohedral ordered-dolomite in the mat dominated by FAPB.


Assuntos
Sedimentos Geológicos/microbiologia , Microbiota , Tolerância ao Sal , Carbonato de Cálcio/análise , Cianobactérias/genética , Cianobactérias/metabolismo , Ambientes Extremos , Sedimentos Geológicos/química , Magnésio/análise , Catar , Salinidade
9.
Astrobiology ; 17(6-7): 595-611, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28731819

RESUMO

The Close-Up Imager (CLUPI) onboard the ESA ExoMars Rover is a powerful high-resolution color camera specifically designed for close-up observations. Its accommodation on the movable drill allows multiple positioning. The science objectives of the instrument are geological characterization of rocks in terms of texture, structure, and color and the search for potential morphological biosignatures. We present the CLUPI science objectives, performance, and technical description, followed by a description of the instrument's planned operations strategy during the mission on Mars. CLUPI will contribute to the rover mission by surveying the geological environment, acquiring close-up images of outcrops, observing the drilling area, inspecting the top portion of the drill borehole (and deposited fines), monitoring drilling operations, and imaging samples collected by the drill. A status of the current development and planned science validation activities is also given. Key Words: Mars-Biosignatures-Planetary Instrumentation. Astrobiology 17, 595-611.

10.
Sci Rep ; 5: 15525, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26510667

RESUMO

Helictites--an enigmatic type of mineral structure occurring in some caves--differ from classical speleothems as they develop with orientations that defy gravity. While theories for helictite formation have been forwarded, their genesis remains equivocal. Here, we show that a remarkable suite of helictites occurring in Asperge Cave (France) are formed by biologically-mediated processes, rather than abiotic processes as had hitherto been proposed. Morphological and petro-physical properties are inconsistent with mineral precipitation under purely physico-chemical control. Instead, microanalysis and molecular-biological investigation reveals the presence of a prokaryotic biofilm intimately associated with the mineral structures. We propose that microbially-influenced mineralization proceeds within a gliding biofilm which serves as a nucleation site for CaCO3, and where chemotaxis influences the trajectory of mineral growth, determining the macroscopic morphology of the speleothems. The influence of biofilms may explain the occurrence of similar speleothems in other caves worldwide, and sheds light on novel biomineralization processes.


Assuntos
Biofilmes/crescimento & desenvolvimento , Carbonato de Cálcio/metabolismo , Cavernas/microbiologia , Carbonato de Cálcio/química
11.
Proc Natl Acad Sci U S A ; 109(38): 15146-51, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22949693

RESUMO

The 3.45-billion-year-old Strelley Pool Formation of Western Australia preserves stromatolites that are considered among the oldest evidence for life on Earth. In places of exceptional preservation, these stromatolites contain laminae rich in organic carbon, interpreted as the fossil remains of ancient microbial mats. To better understand the biogeochemistry of these rocks, we performed microscale in situ sulfur isotope measurements of the preserved organic sulfur, including both Δ(33)S and . This approach allows us to tie physiological inference from isotope ratios directly to fossil biomass, providing a means to understand sulfur metabolism that is complimentary to, and independent from, inorganic proxies (e.g., pyrite). Δ(33)S values of the kerogen reveal mass-anomalous fractionations expected of the Archean sulfur cycle, whereas values show large fractionations at very small spatial scales, including values below -15‰. We interpret these isotopic patterns as recording the process of sulfurization of organic matter by H(2)S in heterogeneous mat pore-waters influenced by respiratory S metabolism. Positive Δ(33)S anomalies suggest that disproportionation of elemental sulfur would have been a prominent microbial process in these communities.


Assuntos
Isótopos de Enxofre/química , Archaea/fisiologia , Austrália , Fósseis , Sedimentos Geológicos , Geologia/métodos , Sulfeto de Hidrogênio/química , Íons , Compostos Orgânicos/química , Isótopos de Enxofre/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...