Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Front Physiol ; 13: 895324, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091400

RESUMO

Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are tetramers that generate electrical rhythmicity in special brain neurons and cardiomyocytes. The channels are activated by membrane hyperpolarization. The binding of cAMP to the four available cyclic nucleotide-binding domains (CNBD) enhances channel activation. We analyzed in the present study the mechanism of how the effect of cAMP binding is transmitted to the pore domain. Our strategy was to uncouple the C-linker (CL) from the channel core by inserting one to five glycine residues between the S6 gate and the A'-helix (constructs 1G to 5G). We quantified in full-length HCN2 channels the resulting functional effects of the inserted glycines by current activation as well as the structural dynamics and statics using molecular dynamics simulations and Constraint Network Analysis. We show functionally that already in 1G the cAMP effect on activation is lost and that with the exception of 3G and 5G the concentration-activation relationships are shifted to depolarized voltages with respect to HCN2. The strongest effect was found for 4G. Accordingly, the activation kinetics were accelerated by all constructs, again with the strongest effect in 4G. The simulations reveal that the average residue mobility of the CL and CNBD domains is increased in all constructs and that the junction between the S6 and A'-helix is turned into a flexible hinge, resulting in a destabilized gate in all constructs. Moreover, for 3G and 4G, there is a stronger downward displacement of the CL-CNBD than in HCN2 and the other constructs, resulting in an increased kink angle between S6 and A'-helix, which in turn loosens contacts between the S4-helix and the CL. This is suggested to promote a downward movement of the S4-helix, similar to the effect of hyperpolarization. In addition, exclusively in 4G, the selectivity filter in the upper pore region and parts of the S4-helix are destabilized. The results provide new insights into the intricate activation of HCN2 channels.

2.
Sci Adv ; 7(37): eabg4298, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34516872

RESUMO

Glutamate has dual roles in metabolism and signaling; thus, signaling functions must be isolatable and distinct from metabolic fluctuations, as seen in low-glutamate domains at synapses. In plants, wounding triggers electrical and calcium (Ca2+) signaling, which involve homologs of mammalian glutamate receptors. The hydraulic dispersal and squeeze-cell hypotheses implicate pressure as a key component of systemic signaling. Here, we identify the stretch-activated anion channel MSL10 as necessary for proper wound-induced electrical and Ca2+ signaling. Wound gene induction, genetics, and Ca2+ imaging indicate that MSL10 acts in the same pathway as the glutamate receptor­like proteins (GLRs). Analogous to mammalian NMDA glutamate receptors, GLRs may serve as coincidence detectors gated by the combined requirement for ligand binding and membrane depolarization, here mediated by stretch activation of MSL10. This study provides a molecular genetic basis for a role of mechanical signal perception and the transmission of long-distance electrical and Ca2+ signals in plants.

3.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301910

RESUMO

Cyclic nucleotide-gated (CNG) ion channels of olfactory neurons are tetrameric membrane receptors that are composed of two A2 subunits, one A4 subunit, and one B1b subunit. Each subunit carries a cyclic nucleotide-binding domain in the carboxyl terminus, and the channels are activated by the binding of cyclic nucleotides. The mechanism of cooperative channel activation is still elusive. Using a complete set of engineered concatenated olfactory CNG channels, with all combinations of disabled binding sites and fit analyses with systems of allosteric models, the thermodynamics of microscopic cooperativity for ligand binding was subunit- and state-specifically quantified. We show, for the closed channel, that preoccupation of each of the single subunits increases the affinity of each other subunit with a Gibbs free energy (ΔΔG) of ∼-3.5 to ∼-5.5 kJ ⋅ mol-1, depending on the subunit type, with the only exception that a preoccupied opposite A2 subunit has no effect on the other A2 subunit. Preoccupation of two neighbor subunits of a given subunit causes the maximum affinity increase with ΔΔG of ∼-9.6 to ∼-9.9 kJ ⋅ mol-1 Surprisingly, triple preoccupation leads to fewer negative ΔΔG values for a given subunit as compared to double preoccupation. Channel opening increases the affinity of all subunits. The equilibrium constants of closed-open isomerizations systematically increase with progressive liganding. This work demonstrates, on the example of the heterotetrameric olfactory CNG channel, a strategy to derive detailed insights into the specific mutual control of the individual subunits in a multisubunit membrane receptor.


Assuntos
AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Ativação do Canal Iônico , Termodinâmica , Animais , Sítios de Ligação , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Ligantes , Oócitos/metabolismo , Conformação Proteica , Subunidades Proteicas , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/metabolismo
4.
Structure ; 29(10): 1144-1155.e5, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34107287

RESUMO

ABCB4 is described as an ATP-binding cassette (ABC) transporter that primarily transports lipids of the phosphatidylcholine (PC) family but is also capable of translocating a subset of typical multidrug-resistance-associated drugs. The high degree of amino acid identity of 76% for ABCB4 and ABCB1, which is a prototype multidrug-resistance-mediating protein, results in ABCB4's second subset of substrates, which overlap with ABCB1's substrates. This often leads to incomplete annotations of ABCB4, in which it was described as exclusively PC-lipid specific. When the hydrophilic amino acids from ABCB4 are changed to the analogous but hydrophobic ones from ABCB1, the stimulation of ATPase activity by 1,2-dioleoyl-sn-glycero-3-phosphocholine, as a prime example of PC lipids, is strongly diminished, whereas the modulation capability of ABCB1 substrates remains unchanged. This indicates two distinct and autonomous substrate binding sites in ABCB4.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Sítios de Ligação , Humanos , Simulação de Dinâmica Molecular , Fosfatidilcolinas/metabolismo , Ligação Proteica
5.
Biol Chem ; 402(9): 1033-1045, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-33915604

RESUMO

Liver cell hydration (cell volume) is dynamic and can change within minutes under the influence of hormones, nutrients, and oxidative stress. Such volume changes were identified as a novel and important modulator of cell function. It provides an early example for the interaction between a physical parameter (cell volume) on the one hand and metabolism, transport, and gene expression on the other. Such events involve mechanotransduction (osmosensing) which triggers signaling cascades towards liver function (osmosignaling). This article reviews our own work on this topic with emphasis on the role of ß1 integrins as (osmo-)mechanosensors in the liver, but also on their role in bile acid signaling.


Assuntos
Mecanotransdução Celular , Ácidos e Sais Biliares , Tamanho Celular , Hepatócitos , Integrinas , Transdução de Sinais
6.
Sci Rep ; 10(1): 5795, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32242141

RESUMO

Functional selectivity is the ligand-specific activation of certain signal transduction pathways at a receptor and has been described for G protein-coupled receptors. However, it has not yet been described for ligands interacting with integrins without αI domain. Here, we show by molecular dynamics simulations that four side chain-modified derivatives of tauroursodeoxycholic acid (TUDC), an agonist of α5ß1 integrin, differentially shift the conformational equilibrium of α5ß1 integrin towards the active state, in line with the extent of ß1 integrin activation from immunostaining. Unlike TUDC, 24-nor-ursodeoxycholic acid (norUDCA)-induced ß1 integrin activation triggered only transient activation of extracellular signal-regulated kinases and p38 mitogen-activated protein kinase and, consequently, only transient insertion of the bile acid transporter Bsep into the canalicular membrane, and did not involve activation of epidermal growth factor receptor. These results provide evidence that TUDC and norUDCA exert a functional selectivity at α5ß1 integrin and may provide a rationale for differential therapeutic use of UDCA and norUDCA.


Assuntos
Colagogos e Coleréticos/farmacologia , Integrina alfa5beta1/metabolismo , Fígado/metabolismo , Sistema de Sinalização das MAP Quinases , Ácido Tauroquenodesoxicólico/farmacologia , Ácido Ursodesoxicólico/farmacologia , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Sítios de Ligação , Colagogos e Coleréticos/química , Receptores ErbB/metabolismo , Integrina alfa5beta1/química , Fígado/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular , Ligação Proteica , Ratos , Ratos Wistar , Ácido Tauroquenodesoxicólico/química , Ácido Ursodesoxicólico/química , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Chembiochem ; 21(16): 2311-2320, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32227403

RESUMO

High-affinity fluorescent derivatives of cyclic adenosine and guanosine monophosphate are powerful tools for investigating their natural targets. Cyclic nucleotide-regulated ion channels belong to these targets and are vital for many signal transduction processes, such as vision and olfaction. The relation of ligand binding to activation gating is still challenging, and there is a need for fluorescent probes that enable the process to be broken down to the single-molecule level. This inspired us to prepare fluorophore-labeled cyclic nucleotides, which are composed of a bright dye and a nucleotide derivative with a thiophenol motif at position 8 that has already been shown to enable superior binding affinity. These bioconjugates were prepared by a novel cross-linking strategy that involves substitution of the nucleobase with a modified thiophenolate in good yield. Both fluorescent nucleotides are potent activators of different cyclic nucleotide-regulated ion channels with respect to the natural ligand and previously reported substances. Molecular docking of the probes excluding the fluorophore reveals that the high potency can be attributed to additional hydrophobic and cation-π interactions between the ligand and the protein. Moreover, the introduced substances have the potential to investigate related target proteins, such as cAMP- and cGMP-dependent protein kinases, exchange proteins directly activated by cAMP or phosphodiesterases.


Assuntos
AMP Cíclico/química , AMP Cíclico/farmacologia , GMP Cíclico/química , GMP Cíclico/farmacologia , Corantes Fluorescentes/química , Canais Iônicos/agonistas , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Canais Iônicos/química , Canais Iônicos/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Conformação Proteica
8.
J Biol Chem ; 294(47): 17978-17987, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31615893

RESUMO

cAMP acts as a second messenger in many cellular processes. Three protein types mainly mediate cAMP-induced effects: PKA, exchange protein directly activated by cAMP (Epac), and cyclic nucleotide-modulated channels (cyclic nucleotide-gated or hyperpolarization-activated and cyclic nucleotide-modulated (HCN) channels). Discrimination among these cAMP signaling pathways requires specific targeting of only one protein. Previously, cAMP modifications at position N6 of the adenine ring (PKA) and position 2'-OH of the ribose (Epac) have been used to produce target-selective compounds. However, cyclic nucleotide-modulated ion channels were usually outside of the scope of these previous studies. These channels are widely distributed, so possible channel cross-activation by PKA- or Epac-selective agonists warrants serious consideration. Here we demonstrate the agonistic effects of three PKA-selective cAMP derivatives, N6-phenyladenosine-3',5'-cyclic monophosphate (N6-Phe-cAMP), N6-benzyladenosine-3',5'-cyclic monophosphate (N6-Bn-cAMP), and N6-benzoyl-adenosine-3',5'-cyclic monophosphate (N6-Bnz-cAMP), on murine HCN2 pacemaker channels. Electrophysiological characterization in Xenopus oocytes revealed that these derivatives differ in apparent affinities depending on the modification type but that their efficacy and effects on HCN2 activation kinetics are similar to those of cAMP. Docking experiments suggested a pivotal role of Arg-635 at the entrance of the binding pocket in HCN2, either causing stabilizing cation-π interactions with the aromatic ring in N6-Phe-cAMP or N6-Bn-cAMP or a steric clash with the aromatic ring in N6-Bnz-cAMP. A reduced apparent affinity of N6-Phe-cAMP toward the variants R635A and R635E strengthened that notion. We conclude that some PKA activators also effectively activate HCN2 channels. Hence, when studying PKA-mediated cAMP signaling with cAMP derivatives in a native environment, activation of HCN channels should be considered.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/agonistas , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Arginina/metabolismo , Sítios de Ligação , Ativação Enzimática , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico , Cinética , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Oócitos/metabolismo , Xenopus
9.
Bioorg Med Chem ; 27(20): 115005, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31466836

RESUMO

Five new metabolites, including the xanthone derivative wentixanthone A (1), the benzophenone wentiphenone A (2), the diastereomeric mixtures of the bianthrones wentibianthrone A (3a, b) and wentibianthrone B (4a, b), as well as (10R,10'S)-wentibianthrone C (5a) and (10R,10'R)-wentibianthrone C (5b) were obtained from the fungus Aspergillus wentii, isolated from soil of the hypersaline lake El Hamra in Wadi El-Natrun, Egypt. The structures of the isolated compounds were established by one and two-dimensional NMR and MS spectroscopic analysis. The relative configuration of bianthrones (3-5) was elucidated by comparison of experimental and computed 1H NMR chemical shifts. Results of biological assays are reported.


Assuntos
Antracenos/isolamento & purificação , Aspergillus/química , Benzofenonas/isolamento & purificação , Xantonas/isolamento & purificação , Animais , Antracenos/química , Benzofenonas/química , Linhagem Celular Tumoral , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Lagos/microbiologia , Camundongos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Xantonas/química
10.
FASEB J ; 33(10): 11507-11527, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31345061

RESUMO

We previously reported that inactivation of the transmembrane taurine transporter (TauT or solute carrier 6a6) causes early retinal degeneration in mice. Compatible with taurine's indispensability for cell volume homeostasis, protein stabilization, cytoprotection, antioxidation, and immuno- and neuromodulation, mice develop multisystemic dysfunctions (hearing loss; liver fibrosis; and behavioral, heart, and skeletal muscle abnormalities) later on. Here, by genetic, cell biologic, in vivo1H-magnetic resonance spectroscopy and molecular dynamics simulation studies, we conducted in-depth characterization of a novel disorder: human TAUT deficiency. Loss of TAUT function due to a homozygous missense mutation caused panretinal degeneration in 2 brothers. TAUTp.A78E still localized in the plasma membrane but is predicted to impact structural stabilization. 3H-taurine uptake by peripheral blood mononuclear cells was reduced by 95%, and taurine levels were severely reduced in plasma, skeletal muscle, and brain. Extraocular dysfunctions were not yet detected, but significantly increased urinary excretion of 8-oxo-7,8-dihydroguanosine indicated generally enhanced (yet clinically unapparent) oxidative stress and RNA oxidation, warranting continuous broad surveillance.-Preising, M. N., Görg, B., Friedburg, C., Qvartskhava, N., Budde, B. S., Bonus, M., Toliat, M. R., Pfleger, C., Altmüller, J., Herebian, D., Beyer, M., Zöllner, H. J., Wittsack, H.-J., Schaper, J., Klee, D., Zechner, U., Nürnberg, P., Schipper, J., Schnitzler, A., Gohlke, H., Lorenz, B., Häussinger, D., Bolz, H. J. Biallelic mutation of human SLC6A6 encoding the taurine transporter TAUT is linked to early retinal degeneration.


Assuntos
Glicoproteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Mutação de Sentido Incorreto/genética , Degeneração Retiniana/metabolismo , Taurina/metabolismo , Transporte Biológico/fisiologia , Membrana Celular/metabolismo , Células Cultivadas , Guanosina/análogos & derivados , Guanosina/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo/fisiologia
11.
Sci Rep ; 9(1): 10068, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296930

RESUMO

The N-methyl-D-aspartate subfamily of ionotropic glutamate receptors (NMDARs) is well known for its important roles in the central nervous system (CNS), e.g. learning and memory formation. Besides the CNS, NMDARs are also expressed in numerous peripheral tissues including the pancreas, kidney, stomach, and blood cells, where an understanding of their physiological and pathophysiological roles is only evolving. Whereas subunit composition increases functional diversity of NMDARs, a great number of endogenous cues tune receptor signaling. Here, we characterized the effects of the steroid bile salts cholate and chenodeoxycholate (CDC) on recombinantly expressed NMDARs of defined molecular composition. CDC inhibited NMDARs in an isoform-dependent manner, preferring GluN2D and GluN3B over GluN2A and GluN2B receptors. Determined IC50 values were in the range of bile salt serum concentrations in severe cholestatic disease states, pointing at a putative pathophysiological significance of the identified receptor modulation. Both pharmacological and molecular simulation analyses indicate that CDC acts allosterically on GluN2D, whereas it competes with agonist binding on GluN3B receptors. Such differential modes of inhibition may allow isoform-specific targeted interference with the NMDAR/bile salt interaction. In summary, our study provides further molecular insight into the modulation of NMDARs by endogenous steroids and points at a putative pathophysiological role of the receptors in cholestatic disease.


Assuntos
Ácidos e Sais Biliares/metabolismo , Ácido Quenodesoxicólico/metabolismo , Isoformas de Proteínas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Regulação Alostérica , Animais , Clonagem Molecular , Simulação por Computador , Ligação de Hidrogênio , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação/genética , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas/genética , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Transdução de Sinais , Relação Estrutura-Atividade , Xenopus laevis
12.
Biophys J ; 116(12): 2411-2422, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31130235

RESUMO

A highly specific molecular interaction of diffusible ligands with their receptors belongs to the key processes in cellular signaling. Because an appropriate method to monitor the unitary binding events is still missing, most of our present knowledge is based on ensemble signals recorded from a big number of receptors, such as ion currents or fluorescence changes of suitably labeled receptors, and reasoning from these data to the ligand binding. To study the binding process itself, appropriately tagged ligands are required that fully activate the receptors and report the binding at the same time. Herein, we tailored a series of 18 novel fluorescent cyclic nucleotide derivatives by attaching 6 different dyes via different alkyl linkers to the 8-position of the purine ring of cGMP or cAMP. The biological activity was determined in inside-out macropatches containing either homotetrameric (CNGA2), heterotetrameric (CNGA2:CNGA4:CNGB1b), or hyperpolarization-activated cyclic nucleotide-modulated (HCN2) channels. All these novel fluorescent ligands are efficient to activate the channels, and the potency of most of them significantly exceeded that of the natural cyclic nucleotides cGMP or cAMP. Moreover, some of them showed an enhanced brightness when bound to the channels. The best of our derivatives bear great potential to systematically analyze the activation mechanism in CNG and HCN channels, at both the level of ensemble and single-molecule analyses.


Assuntos
AMP Cíclico/química , GMP Cíclico/química , Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Corantes Fluorescentes/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Simulação de Acoplamento Molecular , Conformação Proteica , Imagem Individual de Molécula
13.
Front Pharmacol ; 10: 400, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31040786

RESUMO

Multidrug resistance (MDR) in tumors and pathogens remains a major problem in the efficacious treatment of patients by reduction of therapy options and subsequent treatment failure. Various mechanisms are described to be involved in the development of MDR with overexpression of ATP-binding cassette (ABC) transporters reflecting the most extensively studied. These membrane transporters translocate a wide variety of substrates utilizing energy from ATP hydrolysis leading to decreased intracellular drug accumulation and impaired drug efficacy. One treatment strategy might be inhibition of transporter-mediated efflux by small molecules. Isocoumarins and 3,4-dihydroisocoumarins are a large group of natural products derived from various sources with great structural and functional variety, but have so far not been in the focus as potential MDR reversing agents. Thus, three natural products and nine novel 3,4-dihydroisocoumarins were designed and analyzed regarding cytotoxicity induction and inhibition of human ABC transporters P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) in a variety of human cancer cell lines as well as the yeast ABC transporter Pdr5 in Saccharomyces cerevisiae. Dual inhibitors of P-gp and BCRP and inhibitors of Pdr5 were identified, and distinct structure-activity relationships for transporter inhibition were revealed. The strongest inhibitor of P-gp and BCRP, which inhibited the transporters up to 80 to 90% compared to the respective positive controls, demonstrated the ability to reverse chemotherapy resistance in resistant cancer cell lines up to 5.6-fold. In the case of Pdr5, inhibitors were identified that prevented substrate transport and/or ATPase activity with IC50 values in the low micromolar range. However, cell toxicity was not observed. Molecular docking of the test compounds to P-gp revealed that differences in inhibition capacity were based on different binding affinities to the transporter. Thus, these small molecules provide novel lead structures for further optimization.

14.
Artigo em Inglês | MEDLINE | ID: mdl-30348662

RESUMO

The 23-membered-ring macrolide tacrolimus, a commonly used immunosuppressant, also known as FK506, is a broad-spectrum inhibitor and an efflux pump substrate of pleiotropic drug resistance (PDR) ATP-binding cassette (ABC) transporters. Little, however, is known about the molecular mechanism by which FK506 inhibits PDR transporter drug efflux. Thus, to obtain further insights we searched for FK506-resistant mutants of Saccharomyces cerevisiae cells overexpressing either the endogenous multidrug efflux pump Pdr5 or its Candida albicans orthologue, Cdr1. A simple but powerful screen gave 69 FK506-resistant mutants with, between them, 72 mutations in either Pdr5 or Cdr1. Twenty mutations were in just three Pdr5/Cdr1 equivalent amino acid positions, T550/T540 and T552/S542 of extracellular loop 1 (EL1) and A723/A713 of EL3. Sixty of the 72 mutations were either in the ELs or the extracellular halves of individual transmembrane spans (TMSs), while 11 mutations were found near the center of individual TMSs, mostly in predicted TMS-TMS contact points, and only two mutations were in the cytosolic nucleotide-binding domains of Pdr5. We propose that FK506 inhibits Pdr5 and Cdr1 drug efflux by slowing transporter opening and/or substrate release, and that FK506 resistance of Pdr5/Cdr1 drug efflux is achieved by modifying critical intramolecular contact points that, when mutated, enable the cotransport of FK506 with other pump substrates. This may also explain why the 35 Cdr1 mutations that caused FK506 insensitivity of fluconazole efflux differed from the 13 Cdr1 mutations that caused FK506 insensitivity of cycloheximide efflux.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Antifúngicos/farmacologia , Candida albicans/genética , Proteínas Fúngicas/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Tacrolimo/farmacologia , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Candida albicans/efeitos dos fármacos , Depsipeptídeos/farmacologia , Farmacorresistência Fúngica/genética , Saccharomyces cerevisiae/efeitos dos fármacos
15.
RSC Adv ; 9(3): 1491-1500, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35518011

RESUMO

Co-cultivation of the endophytic fungus Fusarium tricinctum with Streptomyces lividans on solid rice medium led to the production of four new naphthoquinone dimers, fusatricinones A-D (1-4), and a new lateropyrone derivative, dihydrolateropyrone (5), that were not detected in axenic fungal controls. In addition, four known cryptic compounds, zearalenone (7), (-)-citreoisocoumarin (8), macrocarpon C (9) and 7-hydroxy-2-(2-hydroxypropyl)-5-methylchromone (10), that were likewise undetectable in extracts from fungal controls, were obtained from the co-culture extracts. The known antibiotically active compound lateropyrone (6), the depsipeptides enniatins B (11), B1 (12) and A1 (13), and the lipopeptide fusaristatin A (14), that were present in axenic fungal controls and in co-culture extracts, were upregulated in the latter. The structures of the new compounds were elucidated by 1D and 2D NMR spectra as well as by HRESIMS data. The relative and absolute configuration of dihydrolateropyrone (5) was elucidated by TDDFT-ECD calculations.

16.
Sci Rep ; 8(1): 14960, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297855

RESUMO

Cyclic nucleotide-gated (CNG) and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are tetrameric non-specific cation channels in the plasma membrane that are activated by either cAMP or cGMP binding to specific binding domains incorporated in each subunit. Typical apparent affinities of these channels for these cyclic nucleotides range from several hundred nanomolar to tens of micromolar. Here we synthesized and characterized novel cAMP and cGMP derivatives by substituting either hydrophobic alkyl chains or similar-sized more hydrophilic heteroalkyl chains to the 8-position of the purine ring with the aim to obtain full agonists of higher potency. The compounds were tested in homotetrameric CNGA2, heterotetrameric CNGA2:CNGA4:CNGB1b and homotetrameric HCN2 channels. We show that nearly all compounds are full agonists and that longer alkyl chains systematically increase the apparent affinity, at the best more than 30 times. The effects are stronger in CNG than HCN2 channels which, however, are constitutively more sensitive to cAMP. Kinetic analyses reveal that the off-rate is significantly slowed by the hydrophobic alkyl chains. Molecular dynamics simulations and free energy calculations suggest that an intricate enthalpy - entropy compensation underlies the higher apparent affinity of the derivatives with the longer alkyl chains, which is shown to result from a reduced loss of configurational entropy upon binding.


Assuntos
AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/agonistas , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/agonistas , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Entropia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Camundongos , Simulação de Dinâmica Molecular , Ratos , Termodinâmica , Xenopus
17.
J Hepatol ; 67(6): 1253-1264, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28733223

RESUMO

BACKGROUND & AIMS: The bile salt export pump (BSEP, ABCB11), multidrug resistance protein 3 (MDR3, ABCB4) and the ATPase familial intrahepatic cholestasis 1 (FIC1, ATP8B1) mediate bile formation. This study aimed to determine the contribution of mutations and common variants in the FIC1, BSEP and MDR3 genes to cholestatic disorders of differing disease onset and severity. METHODS: Coding exons with flanking intron regions of ATP8B1, ABCB11, and ABCB4 were sequenced in cholestatic patients with assumed genetic cause. The effects of new variants were evaluated by bioinformatic tools and 3D protein modeling. RESULTS: In 427 patients with suspected inherited cholestasis, 149 patients carried at least one disease-causing mutation in FIC1, BSEP or MDR3, respectively. Overall, 154 different mutations were identified, of which 25 were novel. All 13 novel missense mutations were disease-causing according to bioinformatics analyses and homology modeling. Eighty-two percent of patients with at least one disease-causing mutation in either of the three genes were children. One or more common polymorphism(s) were found in FIC1 in 35.3%, BSEP in 64.3% and MDR3 in 72.6% of patients without disease-causing mutations in the respective gene. Minor allele frequencies of common polymorphisms in BSEP and MDR3 varied in our cohort compared to the general population, as described by gnomAD. However, differences in ethnic background may contribute to this effect. CONCLUSIONS: In a large cohort of patients, 154 different variants were detected in FIC1, BSEP, and MDR3, 25 of which were novel. In our cohort, frequencies for risk alleles of BSEP (p.V444A) and MDR3 (p.I237I) polymorphisms were significantly overrepresented in patients without disease-causing mutation in the respective gene, indicating that these common variants can contribute to a cholestatic phenotype. LAY SUMMARY: FIC1, BSEP, and MDR3 represent hepatobiliary transport proteins essential for bile formation. Genetic variants in these transporters underlie a broad spectrum of cholestatic liver diseases. To confirm a genetic contribution to the patients' phenotypes, gene sequencing of these three major cholestasis-related genes was performed in 427 patients and revealed 154 different variants of which 25 have not been previously reported in a database. In patients without a disease-causing mutation, common genetic variants were detected in a high number of cases, indicating that these common variants may contribute to cholestasis development.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Colestase/genética , Mutação , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Estudos de Coortes , Variação Genética , Humanos , Lactente , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...