Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Res Tech ; 87(8): 1974-1983, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38590286

RESUMO

As the first boundary between the environment and the material, the surface plays an important role in their interaction with each other, therefore, the use of appropriate tools and analysis to examine the mechanical properties and morphology of surfaces has particular importance in industry and research. In this research, a thin film of nickel was deposited on metal substrates made of aluminum, copper, and steel by using the RF magnetic cathode. Then, using a non-contact atomic force microscope, the morphological properties of the nickel film with static parameters, Minkowski functionals (MF's), fractal, and multifractal were extracted to be analyzed and studied. After that, using parameters such as root mean square (RMS) roughness, skewness, and kurtosis, it was determined how the surface roughness, distribution, and probability density of particles on the film surface alters with the change of the substrate. Next, by examining and analyzing the Δα and Δf parameters obtained from the multifractal section, the morphology of the produced film on the metal substrates was investigated. Then, the change in the surface plasmon resonance (SPR) peak position is changed for the prepared film in the range of the absorption spectrum due to the substrate effect and the microstructural properties of the formed film. HIGHLIGHTS: Ni film has been deposited by Rf magnetron sputtering. The effect of metal substrates on the topography, fractality, and optical properties was studied. Minkowski functionals were used to investigate the surface morphology of the samples. Substrate's material and the topography of the formed film can changed the surface plasmon resonance position.

2.
Microsc Res Tech ; 86(2): 169-180, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36260856

RESUMO

In this work, the atomic force microscopy (AFM) technique was used to characterize 3D MgF2 thin film surfaces through advanced analysis involving morphological, fractal, multifractal, succolarity, lacunarity and surface entropy (SE) parameters, consistent with ISO 25178-2: 2012. Samples were synthesized by electron beam deposition, grown in three different temperatures. Three different temperatures of 25°C (laboratory temperature), 150 and 300°C were chosen. The temperature of 300°C is usually the highest temperature that can be deposited with the electron beam evaporation coating system. The substrates were made of glass (diameter 16 mm, thickness 3 mm), and the samples were prepared at a pressure of 5 × 10-5  Torr. The statistical results from the AFM images indicate that topographic asperities decrease with increasing deposition temperature, showing a decrease in roughness values. Regardless of the deposition temperature, all surfaces have a self-similar behavior, presenting a very linear PSD distribution, and, according to our results, the sample deposited at 300° had the highest spatial complexity. On the other hand, surface percolation is increasing when temperature increases, indicating that its low roughness and high spatial complexity play an important role on the formation of their most percolating surface microtexture. Our results demonstrate that the lower deposition temperature promoted the formation of less discontinuous height distributions in the MgF2 films.

3.
Nanomaterials (Basel) ; 12(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36558227

RESUMO

We derive low-energy effective k·p Hamiltonians for monolayer C3N at the Γ and M points of the Brillouin zone, where the band edge in the conduction and valence band can be found. Our analysis of the electronic band symmetries helps to better understand several results of recent ab initio calculations for the optical properties of this material. We also calculate the Landau-level spectrum. We find that the Landau-level spectrum in the degenerate conduction bands at the Γ point acquires properties that are reminiscent of the corresponding results in bilayer graphene, but there are important differences as well. Moreover, because of the heavy effective mass, n-doped samples may host interesting electron-electron interaction effects.

4.
J Pharm Biomed Anal ; 139: 156-164, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28284080

RESUMO

In this paper a novel electrochemical sensor based on nickel carbide (Ni3C) nanoparticles as a new modifier was constructed. Ni3C nanoparticle was synthesized and characterized by scanning electron microscopy, X-ray diffraction and first-principles study. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) studies confirmed the electrode modification. Afterwards, the new electrode for the first time was used for interaction study between vitamin K1 and warfarin as an anticoagulant drug by differential pulse voltammetry. The adduct formation between the drug and vitamin K1 was improved by decreasing in anodic peak current of warfarin in the presence of different amounts of vitamin K1. The binding constant between warfarin and vitamin K1 was obtained by voltammetric and UV-vis and fluorescence spectroscopic methods. The molecular modeling method was also performed to explore the structural features and binding mechanism of warfarin to vitamin K1. The different aspects of modeling of vitamin K1 and warfarin and their adduct structures confirmed the adduct formation by hydrogen bonding.


Assuntos
Carbono/química , Nanopartículas Metálicas/química , Modelos Moleculares , Níquel/química , Vitamina K 1/metabolismo , Varfarina/metabolismo , Interações Medicamentosas/fisiologia , Eletrodos , Vitamina K 1/análise , Varfarina/análise , Difração de Raios X
5.
J Phys Chem B ; 119(17): 5662-70, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25839675

RESUMO

In the present work three-dimensional (3-D) surface topography of Cu-Ni nanoparticles in hydrogenated amorphous carbon (Cu-Ni NPs @ a-C:H) with constant thickness of Cu and three thicknesses of Ni prepared by RF-Plasma Enhanced Chemical Vapor Deposition (RF-PECVD) system were investigated. The thin films of Cu-Ni NPs @ a-C:H with constant thickness of Cu and three thicknesses of Ni deposited by radio frequency (RF)-sputtering and RF-PECVD systems, were characterized. To determine the mass thickness and atomic structure of the films, the Rutherford backscattering spectroscopy (RBS) spectra was applied. The absorption spectra were applied to study localized surface plasmon resonance (LSPR) peaks of Cu-Ni NPs (observed around 608 nm in visible spectra), which is widened and shifted to lower wavelengths as the thickness of Ni over layer increases, and their changes are also evaluated by the 3-D surface topography. These nanostructures were investigated over square areas of 1 µm × 1 µm using atomic force microscopy (AFM) and multifractal analysis. Topographic characterization of surface samples (in amplitude, spatial distribution, and pattern of surface characteristics) highlighted 3-D surfaces with multifractal features which can be quantitatively estimated by the multifractal measures. The 3-D surface topography Cu-Ni NPs @ a-C:H with constant thickness of Cu and three thicknesses of Ni prepared by RF-PECVD system can be characterized using the multifractal geometry in correlation with the surface statistical parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...