Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(4): e0266812, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35395060

RESUMO

Huntington's disease (HD) is caused by an expansion of the CAG trinucleotide repeat domain in the huntingtin gene that results in expression of a mutant huntingtin protein (mHTT) containing an expanded polyglutamine tract in the amino terminus. A number of therapeutic approaches that aim to reduce mHTT expression either locally in the CNS or systemically are in clinical development. We have previously described sensitive and selective assays that measure human HTT proteins either in a polyglutamine-independent (detecting both mutant expanded and non-expanded proteins) or in a polyglutamine length-dependent manner (detecting the disease-causing polyglutamine repeats) on the electrochemiluminescence Meso Scale Discovery detection platform. These original assays relied upon polyclonal antibodies. To ensure an accessible and sustainable resource for the HD field, we developed similar assays employing monoclonal antibodies. We demonstrate that these assays have equivalent sensitivity compared to our previous assays through the evaluation of cellular and animal model systems, as well as HD patient biosamples. We also demonstrate cross-site validation of these assays, allowing direct comparison of studies performed in geographically distinct laboratories.


Assuntos
Doença de Huntington , Animais , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Expansão das Repetições de Trinucleotídeos
2.
PLoS One ; 9(5): e96854, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24816435

RESUMO

The expansion of a CAG trinucleotide repeat in the huntingtin gene, which produces huntingtin protein with an expanded polyglutamine tract, is the cause of Huntington's disease (HD). Recent studies have reported that RNAi suppression of polyglutamine-expanded huntingtin (mutant HTT) in HD animal models can ameliorate disease phenotypes. A key requirement for such preclinical studies, as well as eventual clinical trials, aimed to reduce mutant HTT exposure is a robust method to measure HTT protein levels in select tissues. We have developed several sensitive and selective assays that measure either total human HTT or polyglutamine-expanded human HTT proteins on the electrochemiluminescence Meso Scale Discovery detection platform with an increased dynamic range over other methods. In addition, we have developed an assay to detect endogenous mouse and rat HTT proteins in pre-clinical models of HD to monitor effects on the wild type protein of both allele selective and non-selective interventions. We demonstrate the application of these assays to measure HTT protein in several HD in vitro cellular and in vivo animal model systems as well as in HD patient biosamples. Furthermore, we used purified recombinant HTT proteins as standards to quantitate the absolute amount of HTT protein in such biosamples.


Assuntos
Bioensaio/métodos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/imunologia , Encéfalo/metabolismo , Linhagem Celular , Feminino , Humanos , Proteína Huntingtina , Medições Luminescentes , Masculino , Camundongos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/imunologia , Proteínas Nucleares/química , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , Ratos , Solubilidade
3.
Immunology ; 122(1): 65-72, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17472722

RESUMO

Respiratory syncytial virus (RSV) is the primary cause of bronchiolitis in young children. Upon infection both T helper 1 (Th1) and Th2 cytokines are produced. Because RSV-induced Th2 responses have been associated with severe immunopathology and aggravation of allergic reactions, the regulation of the immune response following RSV infection is crucial. In this study we examined the influence of RSV on the activation and function of murine bone marrow-derived dendritic cells (DCs). RSV induced the expression of maturation markers on myeloid DCs (mDCs) in vitro. The mDCs stimulated with RSV and ovalbumin (OVA) enhanced proliferation of OVA-specific T cells, which produced both Th1 and Th2 cytokines. In contrast to mDCs, RSV did not induce the expression of maturation markers on plasmacytoid DCs (pDCs), not did it enhance the proliferation of OVA-specific T cells that were cocultured with pDCs. However, RSV stimulated the production of interferon-alpha (IFN-alpha) by pDCs. Our findings indicate a clear difference in the functional activation of DC subsets. RSV-stimulated mDCs may have immunostimulatory effects on both Th1 and Th2 responses, while RSV-stimulated pDCs have direct antiviral activity through the release of IFN-alpha.


Assuntos
Células Dendríticas/imunologia , Vírus Sinciciais Respiratórios/imunologia , Alérgenos/imunologia , Animais , Células da Medula Óssea/imunologia , Diferenciação Celular/imunologia , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Citocinas/biossíntese , Feminino , Interferon-alfa/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Células Th1/imunologia , Células Th2/imunologia
4.
J Clin Virol ; 34(3): 161-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16126001

RESUMO

BACKGROUND: Respiratory viral infections can influence the course of asthma at different time points. Severe respiratory viral infections during early age are associated with a higher prevalence of asthma in later childhood. In established asthma, viral infections are a frequent cause of asthma exacerbation. OBJECTIVES: The present review focuses on epidemiological and experimental animal data that can illuminate the mechanisms by which viral infections can lead to sensitization to antigen, and exacerbate ongoing allergic airway inflammation and focuses on the role played by dendritic cells (DCs). RESULTS: In experimental rodent models of asthma, respiratory viral infection at the time of a first inhaled antigen exposure is described to induce Th2 sensitization and to enhance the allergic response to a second encounter with the same antigen. Virus infections can modulate airway dendritic cell function by upregulation of costimulatory molecule expression, enhanced recruitment, and by inducing an inflammatory environment, all leading to an enhanced antigen presentation and possibly changing the normal tolerogenic response to inhaled antigen into an immunogenic response. In established asthma, respiratory viral infections attract several inflammatory cells, alter receptor expression on airway smooth muscle and modulate neuroimmune mechanisms, possibly leading to exacerbation of disease. CONCLUSIONS: Animal data suggest that the link between respiratory viral infections and increased asthma is causally related, the viral infection acting on the immune and structural cells to enhance antigen presentation and inflammatory cell recruitment.


Assuntos
Asma/virologia , Células Dendríticas/imunologia , Infecções Respiratórias/complicações , Viroses/imunologia , Alérgenos/imunologia , Animais , Asma/epidemiologia , Asma/imunologia , Humanos , Imunização , Inflamação/virologia , Inalação , Camundongos , Modelos Imunológicos , Prevalência , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/imunologia , Células Th2/imunologia , Viroses/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...