Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 12(11): e1006414, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27820830

RESUMO

The Rif1 protein is a negative regulator of DNA replication initiation in eukaryotes. Here we show that budding yeast Rif1 inhibits DNA replication initiation at the rDNA locus. Absence of Rif1, or disruption of its interaction with PP1/Glc7 phosphatase, leads to more intensive rDNA replication. The effect of Rif1-Glc7 on rDNA replication is similar to that of the Sir2 deacetylase, and the two would appear to act in the same pathway, since the rif1Δ sir2Δ double mutant shows no further increase in rDNA replication. Loss of Rif1-Glc7 activity is also accompanied by an increase in rDNA repeat instability that again is not additive with the effect of sir2Δ. We find, in addition, that the viability of rif1Δ cells is severely compromised in combination with disruption of the MRX or Ctf4-Mms22 complexes, both of which are implicated in stabilization of stalled replication forks. Significantly, we show that removal of the rDNA replication fork barrier (RFB) protein Fob1, alleviation of replisome pausing by deletion of the Tof1/Csm3 complex, or a large deletion of the rDNA repeat array all rescue this synthetic growth defect of rif1Δ cells lacking in addition either MRX or Ctf4-Mms22 activity. These data suggest that the repression of origin activation by Rif1-Glc7 is important to avoid the deleterious accumulation of stalled replication forks at the rDNA RFB, which become lethal when fork stability is compromised. Finally, we show that Rif1-Glc7, unlike Sir2, has an important effect on origin firing outside of the rDNA locus that serves to prevent activation of the DNA replication checkpoint. Our results thus provide insights into a mechanism of replication control within a large repetitive chromosomal domain and its importance for the maintenance of genome stability. These findings may have important implications for metazoans, where large blocks of repetitive sequences are much more common.


Assuntos
Replicação do DNA/genética , DNA Ribossômico/genética , Proteína Fosfatase 1/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a DNA/genética , Instabilidade Genômica , Origem de Replicação/genética , Saccharomyces cerevisiae , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2/genética , Telômero/genética
2.
Antimicrob Agents Chemother ; 59(8): 4584-92, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26014932

RESUMO

The monoterpene carvacrol, the major component of oregano and thyme oils, is known to exert potent antifungal activity against the pathogenic yeast Candida albicans. This monoterpene has been the subject of a considerable number of investigations that uncovered extensive pharmacological properties, including antifungal and antibacterial effects. However, its mechanism of action remains elusive. Here, we used integrative chemogenomic approaches, including genome-scale chemical-genetic and transcriptional profiling, to uncover the mechanism of action of carvacrol associated with its antifungal property. Our results clearly demonstrated that fungal cells require the unfolded protein response (UPR) signaling pathway to resist carvacrol. The mutants most sensitive to carvacrol in our genome-wide competitive fitness assay in the yeast Saccharomyces cerevisiae expressed mutations of the transcription factor Hac1 and the endonuclease Ire1, which is required for Hac1 activation by removing a nonconventional intron from the 3' region of HAC1 mRNA. Confocal fluorescence live-cell imaging revealed that carvacrol affects the morphology and the integrity of the endoplasmic reticulum (ER). Transcriptional profiling of pathogenic yeast C. albicans cells treated with carvacrol demonstrated a bona fide UPR transcriptional signature. Ire1 activity detected by the splicing of HAC1 mRNA in C. albicans was activated by carvacrol. Furthermore, carvacrol was found to potentiate antifungal activity of the echinocandin antifungal caspofungin and UPR inducers dithiothreitol and tunicamycin against C. albicans. This comprehensive chemogenomic investigation demonstrated that carvacrol exerts its antifungal activity by altering ER integrity, leading to ER stress and the activation of the UPR to restore protein-folding homeostasis.


Assuntos
Candida albicans/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Monoterpenos/farmacologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Candida albicans/genética , Cimenos , Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/genética , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/genética
3.
Methods Mol Biol ; 1263: 299-318, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25618354

RESUMO

Chemical genomics is an unbiased, whole-cell approach to characterizing novel compounds to determine mode of action and cellular target. Our version of this technique is built upon barcoded deletion mutants of Saccharomyces cerevisiae and has been adapted to a high-throughput methodology using next-generation sequencing. Here we describe the steps to generate a chemical genomic profile from a compound of interest, and how to use this information to predict molecular mechanism and targets of bioactive compounds.


Assuntos
Descoberta de Drogas/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Mutação/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
4.
ACS Infect Dis ; 1(1): 59-72, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-26878058

RESUMO

Steadily increasing antifungal drug resistance and persistent high rates of fungal-associated mortality highlight the dire need for the development of novel antifungals. Characterization of inhibitors of one enzyme in the GPI anchor pathway, Gwt1, has generated interest in the exploration of targets in this pathway for further study. Utilizing a chemical genomics-based screening platform referred to as the Candida albicans fitness test (CaFT), we have identified novel inhibitors of Gwt1 and a second enzyme in the glycosylphosphatidylinositol (GPI) cell wall anchor pathway, Mcd4. We further validate these targets using the model fungal organism Saccharomyces cerevisiae and demonstrate the utility of using the facile toolbox that has been compiled in this species to further explore target specific biology. Using these compounds as probes, we demonstrate that inhibition of Mcd4 as well as Gwt1 blocks the growth of a broad spectrum of fungal pathogens and exposes key elicitors of pathogen recognition. Interestingly, a strong chemical synergy is also observed by combining Gwt1 and Mcd4 inhibitors, mirroring the demonstrated synthetic lethality of combining conditional mutants of GWT1 and MCD4. We further demonstrate that the Mcd4 inhibitor M720 is efficacious in a murine infection model of systemic candidiasis. Our results establish Mcd4 as a promising antifungal target and confirm the GPI cell wall anchor synthesis pathway as a promising antifungal target area by demonstrating that effects of inhibiting it are more general than previously recognized.

5.
ACS Chem Biol ; 9(1): 247-57, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24117378

RESUMO

Toll-like receptors (TLRs) play a critical role in innate immunity, but activation of TLR signaling pathways is also associated with many harmful inflammatory diseases. Identification of novel anti-inflammatory molecules targeting TLR signaling pathways is central to the development of new treatment approaches for acute and chronic inflammation. We performed high-throughput screening from crude marine sponge extracts on TLR5 signaling and identified girolline. We demonstrated that girolline inhibits signaling through both MyD88-dependent and -independent TLRs (i.e., TLR2, 3, 4, 5, and 7) and reduces cytokine (IL-6 and IL-8) production in human peripheral blood mononuclear cells and macrophages. Using a chemical genomics approach, we identified Elongation Factor 2 as the molecular target of girolline, which inhibits protein synthesis at the elongation step. Together these data identify the sponge natural product girolline as a potential anti-inflammatory agent acting through inhibition of protein synthesis.


Assuntos
Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Imidazóis/isolamento & purificação , Imidazóis/farmacologia , Poríferos/química , Biossíntese de Proteínas/efeitos dos fármacos , Animais , Células CHO , Células Cultivadas , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Humanos , Interleucina-6/imunologia , Interleucina-8/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Receptores Toll-Like/imunologia
6.
FEMS Yeast Res ; 12(1): 48-60, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22093065

RESUMO

Saccharomyces cerevisiae (S. cerevisiae) encounters a multitude of stresses during industrial processes such as wine fermentation including ethanol toxicity. High levels of ethanol reduce the viability of yeast and may prevent completion of fermentation. The identification of ethanol-tolerant genes is important for creating stress-resistant industrial yeast, and S. cerevisiae genomic resources have been utilized for this purpose. We have employed a molecular barcoded yeast open reading frame (MoBY-ORF) high copy plasmid library to identify ethanol-tolerant genes in both the S. cerevisiae S288C laboratory and M2 wine strains. We find that increased dosage of either RCN1 or RSA3 improves tolerance of S288C and M2 to toxic levels of ethanol. RCN1 is a regulator of calcineurin, whereas RSA3 has a role in ribosome maturation. Additional fitness advantages conferred upon overproduction of RCN1 and RSA3 include increased resistance to cell wall degradation, heat, osmotic and oxidative stress. We find that the M2 wine yeast strain is generally more tolerant of stress than S288C with the exception of translation inhibition, which affects M2 growth more severely than S288C. We conclude that regulation of ribosome biogenesis and ultimately translation is a critical factor for S. cerevisiae survival during industrial-related environmental stress.


Assuntos
Etanol/metabolismo , Etanol/toxicidade , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Código de Barras de DNA Taxonômico , Dosagem de Genes , Expressão Gênica , Biblioteca Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Plasmídeos , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética
8.
Science ; 322(5898): 104-10, 2008 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-18719252

RESUMO

Current yeast interactome network maps contain several hundred molecular complexes with limited and somewhat controversial representation of direct binary interactions. We carried out a comparative quality assessment of current yeast interactome data sets, demonstrating that high-throughput yeast two-hybrid (Y2H) screening provides high-quality binary interaction information. Because a large fraction of the yeast binary interactome remains to be mapped, we developed an empirically controlled mapping framework to produce a "second-generation" high-quality, high-throughput Y2H data set covering approximately 20% of all yeast binary interactions. Both Y2H and affinity purification followed by mass spectrometry (AP/MS) data are of equally high quality but of a fundamentally different and complementary nature, resulting in networks with different topological and biological properties. Compared to co-complex interactome models, this binary map is enriched for transient signaling interactions and intercomplex connections with a highly significant clustering between essential proteins. Rather than correlating with essentiality, protein connectivity correlates with genetic pleiotropy.


Assuntos
Mapeamento de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Biologia Computacional , Redes Reguladoras de Genes , Espectrometria de Massas , Redes e Vias Metabólicas , Análise Serial de Proteínas , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Mapeamento de Interação de Proteínas/normas , Proteoma/metabolismo , Proteômica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Transdução de Sinais , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
9.
Mol Biol Cell ; 14(9): 3782-803, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12972564

RESUMO

In Saccharomyces cerevisiae, polarized morphogenesis is critical for bud site selection, bud development, and cell separation. The latter is mediated by Ace2p transcription factor, which controls the daughter cell-specific expression of cell separation genes. Recently, a set of proteins that include Cbk1p kinase, its binding partner Mob2p, Tao3p (Pag1p), and Hym1p were shown to regulate both Ace2p activity and cellular morphogenesis. These proteins seem to form a signaling network, which we designate RAM for regulation of Ace2p activity and cellular morphogenesis. To find additional RAM components, we conducted genetic screens for bilateral mating and cell separation mutants and identified alleles of the PAK-related kinase Kic1p in addition to Cbk1p, Mob2p, Tao3p, and Hym1p. Deletion of each RAM gene resulted in a loss of Ace2p function and caused cell polarity defects that were distinct from formin or polarisome mutants. Two-hybrid and coimmunoprecipitation experiments reveal a complex network of interactions among the RAM proteins, including Cbk1p-Cbk1p, Cbk1p-Kic1p, Kic1p-Tao3p, and Kic1p-Hym1p interactions, in addition to the previously documented Cbk1p-Mob2p and Cbk1p-Tao3p interactions. We also identified a novel leucine-rich repeat-containing protein Sog2p that interacts with Hym1p and Kic1p. Cells lacking Sog2p exhibited the characteristic cell separation and cell morphology defects associated with perturbation in RAM signaling. Each RAM protein localized to cortical sites of growth during both budding and mating pheromone response. Hym1p was Kic1p- and Sog2p-dependent and Sog2p and Kic1p were interdependent for localization, indicating a close functional relationship between these proteins. Only Mob2p and Cbk1p were detectable in the daughter cell nucleus at the end of mitosis. The nuclear localization and kinase activity of the Mob2p-Cbk1p complex were dependent on all other RAM proteins, suggesting that Mob2p-Cbk1p functions late in the RAM network. Our data suggest that the functional architecture of RAM signaling is similar to the S. cerevisiae mitotic exit network and Schizosaccharomyces pombe septation initiation network and is likely conserved among eukaryotes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Fatores de Transcrição/metabolismo , Polaridade Celular/genética , Polaridade Celular/fisiologia , Testes Genéticos , Peptídeos e Proteínas de Sinalização Intracelular , Modelos Moleculares , Morfogênese/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Ativação Transcricional , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...