Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 124(5): 837-847, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31361809

RESUMO

BACKGROUND AND AIMS: Tree rings, as archives of the past and biosensors of the present, offer unique opportunities to study influences of the fluctuating environment over decades to centuries. As such, tree-ring-based wood traits are capital input for global vegetation models. To contribute to earth system sciences, however, sufficient spatial coverage is required of detailed individual-based measurements, necessitating large amounts of data. X-ray computed tomography (CT) scanning is one of the few techniques that can deliver such data sets. METHODS: Increment cores of four different temperate tree species were scanned with a state-of-the-art X-ray CT system at resolutions ranging from 60 µm down to 4.5 µm, with an additional scan at a resolution of 0.8 µm of a splinter-sized sample using a second X-ray CT system to highlight the potential of cell-level scanning. Calibration-free densitometry, based on full scanner simulation of a third X-ray CT system, is illustrated on increment cores of a tropical tree species. KEY RESULTS: We show how multiscale scanning offers unprecedented potential for mapping tree rings and wood traits without sample manipulation and with limited operator intervention. Custom-designed sample holders enable simultaneous scanning of multiple increment cores at resolutions sufficient for tree ring analysis and densitometry as well as single core scanning enabling quantitative wood anatomy, thereby approaching the conventional thin section approach. Standardized X-ray CT volumes are, furthermore, ideal input imagery for automated pipelines with neural-based learning for tree ring detection and measurements of wood traits. CONCLUSIONS: Advanced X-ray CT scanning for high-throughput processing of increment cores is within reach, generating pith-to-bark ring width series, density profiles and wood trait data. This would allow contribution to large-scale monitoring and modelling efforts with sufficient global coverage.


Assuntos
Tomografia Computadorizada por Raios X , Madeira , Densitometria , Raios X
2.
Sci Rep ; 8(1): 7655, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769576

RESUMO

This work presents a framework to exploit the synergy between Digital Volume Correlation (DVC) and iterative CT reconstruction to enhance the quality of high-resolution dynamic X-ray CT (4D-µCT) and obtain quantitative results from the acquired dataset in the form of 3D strain maps which can be directly correlated to the material properties. Furthermore, we show that the developed framework is capable of strongly reducing motion artifacts even in a dataset containing a single 360° rotation.

3.
Environ Sci Technol ; 52(8): 4546-4554, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29595248

RESUMO

On Svalbard, Arctic Norway, an unconventional siliciclastic reservoir, relying on (micro)fractures for enhanced fluid flow in a low-permeable system, is investigated as a potential CO2 sequestration site. The fractures' properties at depth are, however, poorly understood. High resolution X-ray computed tomography (micro-CT) imaging allows one to visualize such geomaterials at reservoir conditions. We investigated reservoir samples from the De Geerdalen Formation on Svalbard to understand the influence of fracture closure on the reservoir fluid flow behavior. Small rock plugs were brought to reservoir conditions, while permeability was measured through them during micro-CT imaging. Local fracture apertures were quantified down to a few micrometers wide. The permeability measurements were complemented with fracture permeability simulations based on the obtained micro-CT images. The relationship between fracture permeability and the imposed confining pressure was determined and linked to the fracture apertures. The investigated fractures closed due to the increased confining pressure, with apertures reducing to approximately 40% of their original size as the confining pressure increased from 1 to 10 MPa. This coincides with a permeability drop of more than 90%. Despite their closure, fluid flow is still controlled by the fractures at pressure conditions similar to those at the proposed storage depth of 800-1000 m.


Assuntos
Dióxido de Carbono , Noruega , Permeabilidade , Svalbard , Microtomografia por Raio-X
4.
Environ Sci Technol ; 49(5): 2867-74, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25683464

RESUMO

Freeze-thaw cycling stresses many environments which include porous media such as soil, rock and concrete. Climate change can expose new regions and subject others to a changing freeze-thaw frequency. Therefore, understanding and predicting the effect of freeze-thaw cycles is important in environmental science, the built environment and cultural heritage preservation. In this paper, we explore the possibilities of state-of-the-art micro-CT in studying the pore scale dynamics related to freezing and thawing. The experiments show the development of a fracture network in a porous limestone when cooling to -9.7 °C, at which an exothermal temperature peak is a proxy for ice crystallization. The dynamics of the fracture network are visualized with a time frame of 80 s. Theoretical assumptions predict that crystallization in these experiments occurs in pores of 6-20.1 nm under transient conditions. Here, the crystallization-induced stress exceeds rock strength when the local crystal fraction in the pores is 4.3%. The location of fractures is strongly related to preferential water uptake paths and rock texture, which are visually identified. Laboratory, continuous X-ray micro-CT scanning opens new perspectives for the pore-scale study of ice crystallization in porous media as well as for environmental processes related to freeze-thaw fracturing.


Assuntos
Mudança Climática , Congelamento , Microtomografia por Raio-X/métodos , Cristalização , Gelo , Porosidade , Solo , Temperatura , Água
5.
Environ Sci Technol ; 48(1): 674-80, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24392942

RESUMO

Steel production is one of the largest contributors to industrial CO2 emissions. This industry also generates large amounts of solid byproducts, such as slag and sludge. In this study, fine grained stainless-steel slag (SSS) is valorized to produce compacts with high compressive strength without the use of a hydraulic binder. This carbonation process is investigated on a pore-scale level to identify how the mineral phases in the SSS react with CO2, where carbonates are formed, and what the impact of these changes is on the pore network of the carbonated SSS compact. In addition to conventional research techniques, high-resolution X-ray computed tomography (HRXCT) is applied to visualize and quantify the changes in situ during the carbonation process. The results show that carbonates mainly precipitate at grain contacts and in capillary pores and this precipitation has little effect on the connectivity of the pore space. This paper also demonstrates the use of a custom-designed polymer reaction cell that allows in situ HRXCT analysis of the carbonation process. This shows the distribution and influence of water and CO2 in the pore network on the carbonate precipitation and, thus, the influence on the compressive strength development of the waste material.


Assuntos
Resíduos Industriais/análise , Aço Inoxidável/química , Tomografia Computadorizada por Raios X/métodos , Carbonatos/química , Cristalização , Microscopia Eletrônica de Varredura , Minerais , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA