Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569059

RESUMO

Declines in bumble bee species range and abundances are documented across multiple continents and have prompted the need for research to aid species recovery and conservation. The rusty patched bumble bee (Bombus affinis) is the first federally listed bumble bee species in North America. We conducted a range-wide population genetics study of B. affinis from across all extant conservation units to inform conservation efforts. To understand the species' vulnerability and help establish recovery targets, we examined population structure, patterns of genetic diversity, and population differentiation. Additionally, we conducted a site-level analysis of colony abundance to inform prioritizing areas for conservation, translocation, and other recovery actions. We find substantial evidence of population structuring along an east-to-west gradient. Putative populations show evidence of isolation by distance, high inbreeding coefficients, and a range-wide male diploidy rate of ~15%. Our results suggest the Appalachians represent a genetically distinct cluster with high levels of private alleles and substantial differentiation from the rest of the extant range. Site-level analyses suggest low colony abundance estimates for B. affinis compared to similar datasets of stable, co-occurring species. These results lend genetic support to trends from observational studies, suggesting that B. affinis has undergone a recent decline and exhibit substantial spatial structure. The low colony abundances observed here suggest caution in overinterpreting the stability of populations even where B. affinis is reliably detected interannually. These results help delineate informed management units, provide context for the potential risks of translocation programs, and help set clear recovery targets for this and other threatened bumble bee species.


Assuntos
Himenópteros , Abelhas/genética , Masculino , Animais , Espécies em Perigo de Extinção
2.
Environ Entomol ; 52(5): 918-938, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37681665

RESUMO

Mounting evidence of bumble bee declines and the listing of the rusty patched bumble bee (Bombus affinis Cresson) as federally endangered in the United States in 2017 and Canada in 2012 has stimulated an interest in monitoring and conservation. Understanding the influence of land use on occupancy patterns of imperiled species is crucial to successful recovery planning. Using detection data from community surveys, we assessed land use associations for 7 bumble bee species in Minnesota, USA, including B. affinis. We used multispecies occupancy models to assess the effect of 3 major land use types (developed, agricultural, and natural) within 0.5 and 1.5 km on occupancy of 7 Bombus (Hymenoptera: Apidae) species, while accounting for detection uncertainty. We found that B. affinis occupancy and detection were highest in developed landscapes and lowest in agricultural landscapes, representing an inverse relationship with the relative landcover ratios of these landscapes in Minnesota. Occupancy of 2 bumble bee species had strong positive associations with natural landscapes within 1.5 km and 2 species had strong negative associations with agricultural landscapes within 1.5 km. Our results suggest that best practices for imperiled Bombus monitoring and recovery planning depends upon the surrounding major land use patterns. We provide recommendations for urban planning to support B. affinis based on conservation success in the metropolitan areas of Minneapolis-St. Paul. We also encourage substantial survey effort be employed in agricultural and natural regions of the state historically occupied by B. affinis to determine the current occupancy state.

3.
Environ Toxicol Chem ; 42(1): 213-224, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36342350

RESUMO

Pond management with chemical and biological agents that reduce overgrowth of algae is an important means of maintaining water quality in residential ponds, yet the effects on nontarget species are not fully understood. We assessed the impact of Aquashade (a common nontoxic pond dye) and copper sulfate (a toxic algaecide) on American toad (Anaxyrus americanus), northern leopard frog (Lithobates pipiens), and Cope's gray treefrog (Hyla chrysoscelis) metamorphosis in outdoor mesocosm experiments. We also evaluated the relative impact of tadpole grazing versus chemical treatment on phytoplankton and periphyton abundance. We found no significant effects of pond management treatment on anuran metamorphosis, suggesting that addition of Aquashade and copper sulfate at tested concentrations does not significantly impact anurans under these experimental conditions. Interestingly, we found that the presence of tadpoles more strongly reduced algal abundance than Aquashade or copper sulfate by significantly decreasing phytoplankton and periphyton abundance over time. The present study suggests that anuran tadpoles may be effective at maintaining water quality, and that Aquashade and copper sulfate may have minimal effects on amphibian metamorphosis. Environ Toxicol Chem 2023;42:213-224. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Sulfato de Cobre , Poluentes Químicos da Água , Animais , Anuros , Benzenossulfonatos/farmacologia , Tartrazina/farmacologia , Bufonidae , Larva , Rana pipiens , Fitoplâncton , Poluentes Químicos da Água/toxicidade , Metamorfose Biológica
4.
Ecol Evol ; 12(11): e9512, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36407903

RESUMO

The role of parasites can change depending on the food web community. Predators, for instance, can amplify or dilute parasite effects on their hosts. Likewise, exposure to parasites or predators at one life stage can have long-term consequences on individual performance and survival, which can influence population and disease dynamics. To understand how predators affect amphibian parasite infections across life stages, we manipulated exposure of northern leopard frog (Rana pipiens) tadpoles to three predators (crayfish [Orconectes rusticus], bluegill [Lepomis macrochirus], or mosquitofish [Gambusia affinis]) and to trematode parasites (Echinostoma spp.) in mesocosms and followed juveniles in outdoor terrestrial enclosures through overwintering. Parasites and predators both had strong impacts on metamorphosis with bluegill and parasites individually reducing metamorph survival. However, when fish were present, the negative effects of parasites on survival was not apparent, likely because fish altered community composition via increased algal food resources. Bluegill also reduced snail abundance, which could explain reduced abundance of parasites in surviving metamorphs. Bluegill and parasite exposure increased mass at metamorphosis, which increased metamorph jumping, swimming, and feeding performance, suggesting that larger frogs would experience better terrestrial survival. Effects on size at metamorphosis persisted in the terrestrial environment but did not influence overwintering survival. Based on our results, we constructed stage-structured population models to evaluate the lethal and sublethal effects of bluegill and parasites on population dynamics. Our models suggested that positive effects of bluegill and parasites on body size may have greater effects on population growth than the direct effects of mortality. This study illustrates how predators can alter the outcome of parasitic infections and highlights the need for long-term experiments that investigate how changes in host-parasite systems alter population dynamics. We show that some predators reduce parasite effects and have indirect positive effects on surviving individuals potentially increasing host population persistence.

5.
Ecol Evol ; 12(6): e9022, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35784035

RESUMO

Animal movement is a key process that connects and maintains populations on the landscape, yet for most species, we do not understand how intrinsic and extrinsic factors interact to influence individual movement behavior.Land-use/land-cover changes highlight that connectivity among populations will depend upon an individual's ability to traverse habitats, which may vary as a result of habitat permeability, individual condition, or a combination of these factors.We examined the effects of intrinsic (body size) and extrinsic (habitat type) factors on desiccation tolerance, movement, and orientation in three anuran species (American toads, Anaxyrus americanus; northern leopard frogs, Lithobates pipiens; and Blanchard's cricket frogs, Acris blanchardi) using laboratory and field studies to connect the effects of susceptibility to desiccation, size, and movement behavior in single-habitat types and at habitat edges.Smaller anurans were more vulnerable to desiccation, particularly for species that metamorphose at relatively small sizes. Habitat type had the strongest effect on movement, while body size had more situational and species-specific effects on movement. We found that individuals moved the farthest in habitat types that, when given the choice, they oriented away from, suggesting that these habitats are less favorable and could represent barriers to movement.Overall, our work demonstrated that differences in habitat type had strong impacts on individual movement behavior and influenced choices at habitat edges. By integrating intrinsic and extrinsic factors into our study, we provided evidence that population connectivity may be influenced not only by the habitat matrix but also by the condition of the individuals leaving the habitat patch.

6.
PLoS One ; 17(1): e0262561, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35030210

RESUMO

Emerging infectious diseases are increasing globally and are an additional challenge to species dealing with native parasites and pathogens. Therefore, understanding the combined effects of infectious agents on hosts is important for species' conservation and population management. Amphibians are hosts to many parasites and pathogens, including endemic trematode flatworms (e.g., Echinostoma spp.) and the novel pathogenic amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]). Our study examined how exposure to trematodes during larval development influenced the consequences of Bd pathogen exposure through critical life events. We found that prior exposure to trematode parasites negatively impacted metamorphosis but did not influence the effect of Bd infection on terrestrial growth and survival. Bd infection alone, however, resulted in significant mortality during overwintering-an annual occurrence for most temperate amphibians. The results of our study indicated overwintering mortality from Bd could provide an explanation for enigmatic declines and highlights the importance of examining the long-term consequences of novel parasite exposure.


Assuntos
Anuros/metabolismo , Batrachochytrium/patogenicidade , Trematódeos/metabolismo , Anfíbios/microbiologia , Animais , Anuros/microbiologia , Batrachochytrium/metabolismo , Quitridiomicetos/patogenicidade , Doenças Transmissíveis Emergentes , Hibernação/fisiologia , Metamorfose Biológica/fisiologia , Micoses/microbiologia , Estações do Ano , Trematódeos/fisiologia
7.
PLoS One ; 16(7): e0255058, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34310637

RESUMO

The destruction of freshwater habitat is a major contributor to biodiversity loss in aquatic ecosystems. However, created or restored wetlands could partially mitigate aquatic biodiversity loss by increasing the amount of available habitat across a landscape. We investigated the impact of surrounding terrestrial habitat and water quality variables on suitability for two species of pond-breeding amphibians (bullfrogs [Lithobates catesbeianus] and Blanchard's cricket frogs [Acris blanchardi]) in created permanent wetlands located on an agricultural landscape. We examined tadpole growth and survival in field enclosures placed in ponds surrounded by agricultural, forested, or grassland habitats. We also evaluated the potential for carryover effects of the aquatic environment on terrestrial growth and overwinter survival of cricket frog metamorphs. We found that habitat adjacent to ponds did not predict tadpole growth or survival. Rather, phytoplankton abundance, which showed high variability among ponds within habitat type, was the only predictor of tadpole growth. Cricket frogs emerged larger and earlier from ponds with higher phytoplankton abundance; bullfrogs were also larger and at a more advanced developmental stage in ponds with higher levels of phytoplankton. Overwinter survival of cricket frogs was explained by size at metamorphosis and there were no apparent carryover effects of land use or pond-of-origin on overwinter growth and survival. Our results demonstrate that created ponds in human-dominated landscapes can provide suitable habitat for some anurans, independent of the adjacent terrestrial habitat.


Assuntos
Anuros/crescimento & desenvolvimento , Ecossistema , Fitoplâncton/fisiologia , Agricultura , Animais , Anuros/fisiologia , Biodiversidade , Larva/crescimento & desenvolvimento , Modelos Lineares , Lagoas , Rana catesbeiana/crescimento & desenvolvimento , Qualidade da Água
8.
Environ Toxicol Chem ; 40(10): 2755-2763, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34161619

RESUMO

Globally, parasite-induced diseases in humans and wildlife are on the rise, and pesticide pollution may be a contributing factor. Echinostoma spp. trematode parasites are prominent in North America, and they use ramshorn snails (Planorbella [Helisoma] trivolvis) as intermediate hosts. We investigated the impact of chronic exposure to 1 of 5 pesticide treatments (control, or 50 µg/L of atrazine, glyphosate, carbaryl, or malathion) on uninfected and Echinostoma-infected snails for 41 d in the laboratory. We recorded snail mortality, the number of egg masses laid, change in mass, and behavior. Chronic exposure to atrazine, carbaryl, and malathion significantly decreased snail survival, whereas parasite infection status or exposure to glyphosate did not. Pesticide and parasite treatments did not influence growth or behavior, but parasite infection caused complete reproductive failure in snail hosts. Our results indicated that the direct effects of pesticides could threaten snail populations in natural environments and disrupt host-parasite dynamics.  Environ Toxicol Chem 2021;40:2755-2763. © 2021 SETAC.


Assuntos
Atrazina , Echinostoma , Praguicidas , Animais , Carbaril , Interações Hospedeiro-Parasita , Humanos , Malation/toxicidade , Praguicidas/toxicidade , Caramujos
9.
J Insect Sci ; 21(2)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33908604

RESUMO

The 2020 Student Debates of the Entomological Society of America (ESA) were live-streamed during the Virtual Annual Meeting to debate current, prominent entomological issues of interest to members. The Student Debates Subcommittee of the National ESA Student Affairs Committee coordinated the student efforts throughout the year and hosted the live event. This year, four unbiased introductory speakers provided background for each debate topic while four multi-university teams were each assigned a debate topic under the theme 'Technological Advances to Address Current Issues in Entomology'. The two debate topics selected were as follows: 1) What is the best taxonomic approach to identify and classify insects? and 2) What is the best current technology to address the locust swarms worldwide? Unbiased introduction speakers and debate teams began preparing approximately six months before the live event. During the live event, teams shared their critical thinking and practiced communication skills by defending their positions on either taxonomical identification and classification of insects or managing the damaging outbreaks of locusts in crops.


Assuntos
Entomologia , Animais , Classificação/métodos , Gafanhotos , Controle Biológico de Vetores , Plantas Geneticamente Modificadas
10.
Front Physiol ; 12: 787598, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126177

RESUMO

Arginine vasopressin (AVP) stimulates the concentration of renal urine by increasing the principal cell expression of aquaporin-2 (AQP2) water channels. Prostaglandin E2 (PGE2) and prostaglandin2α (PGF2α) increase the water absorption of the principal cell without AVP, but PGE2 decreases it in the presence of AVP. The underlying mechanism of this paradoxical response was investigated here. Mouse cortical collecting duct (mkpCCDc14) cells mimic principal cells as they endogenously express AQP2 in response to AVP. PGE2 increased AQP2 abundance without desmopressin (dDAVP), while in the presence of dDAVP, PGE2, and PGF2α reduced AQP2 abundance. dDAVP increased the cellular PGD2 and PGE2 release and decreased the PGF2α release. MpkCCD cells expressed mRNAs for the receptors of PGE2 (EP1/EP4), PGF2 (FP), and TxB2 (TP). Incubation with dDAVP increased the expression of EP1 and FP but decreased the expression of EP4. In the absence of dDAVP, incubation of mpkCCD cells with an EP4, but not EP1/3, agonist increased AQP2 abundance, and the PGE2-induced increase in AQP2 was blocked with an EP4 antagonist. Moreover, in the presence of dDAVP, an EP1/3, but not EP4, agonist decreased the AQP2 abundance, and the addition of EP1 antagonists prevented the PGE2-mediated downregulation of AQP2. Our study shows that in mpkCCDc14 cells, reduced EP4 receptor and increased EP1/FP receptor expression by dDAVP explains the differential effects of PGE2 and PGF2α on AQP2 abundance with or without dDAVP. As the V2R and EP4 receptor, but not the EP1 and FP receptor, can couple to Gs and stimulate the cyclic adenosine monophosphate (cAMP) pathway, our data support a view that cells can desensitize themselves for receptors activating the same pathway and sensitize themselves for receptors of alternative pathways.

11.
J Wildl Dis ; 56(2): 338-349, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31769713

RESUMO

Host species may differ in their responses to pathogen exposures based on host energy reserves, which could be important for long-term trends in host population growth. Batrachochytrium dendrobatidis (BD) is a pathogen associated with amphibian population declines but also occurs without causing mass mortalities. The impact of BD in populations without associated declines is not well understood, and food abundance could play a role in determining the magnitude of its effects. We exposed American toad (Anaxyrus americanus), northern leopard frog (Lithobates pipiens), and cricket frog (Acris blanchardi) metamorphs to BD under low or high food treatments. Overall, anuran species responded differently to BD exposure and the combined effect of BD exposure and food abundance was additive. American toad survival was lowered by BD exposure and low food availability. Based on these results, we developed a population model for American toads to estimate how reductions in survival could influence population growth. We found that BD could reduce population growth by 14% with high food availability and 21% with low food availability. In contrast, survival of northern leopard frogs was high across all treatments, but their growth was negatively impacted by the additive effects of BD exposure and low food availability. Cricket frog growth and survival were unaffected by BD exposure, suggesting that this species is not sensitive to the effects of this pathogen in terms of growth and survival across environments of different quality in the time period examined. Our results showed that low food availability additively increased the species-specific lethal and sublethal impacts of BD on hosts, which could have implications for long-term host population dynamics.


Assuntos
Anuros/microbiologia , Batrachochytrium , Micoses/veterinária , Animais , Privação de Alimentos , Micoses/microbiologia , Micoses/mortalidade , Fatores de Tempo
12.
Chemosphere ; 220: 845-857, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33395806

RESUMO

We exposed Blanchard's cricket frog (Acris blanchardi) tadpoles to atrazine in simulated aquatic communities (outdoor mesocosms) at nominal concentrations of 0, 1, 10, 100, and 200 µg/L and tracked the effects of exposure to spring emergence in the laboratory, as well as to reproductive age in outdoor, terrestrial enclosures. We tested hypotheses that 1) atrazine addition increases the prevalence and intensity of testicular ova (TO) among phenotypic males at metamorphosis and after overwintering, 2) atrazine reduces maturation of ova after overwintering among phenotypic females, and 3) atrazine alters mass, time, and survival to metamorphosis, as well as growth and survival across terrestrial life stages. Atrazine addition increased probability of TO presence at metamorphosis, but only when treatments were pooled and compared to the control, where background atrazine was detected. Atrazine did not influence the intensity of TO among metamorphs. We observed TO among males at spring emergence and at reproductive age regardless of exposure concentration. We found no evidence for effects of exposure on gonadal maturation among females after overwintering. Exposure to 200 µg/L reduced survival to metamorphosis, but atrazine did not affect mass at metamorphosis, time to metamorphosis, or survival or mass after overwintering. We demonstrate that atrazine addition can increase TO prevalence relative to background rates at metamorphosis and that TO are also present among phenotypic males after overwintering. We suggest that this non-model species is sensitive to effects of larval EDC exposures on gonadal development and morphology and that further work with cricket frogs is warranted.

13.
Dis Aquat Organ ; 131(1): 13-28, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30324911

RESUMO

The result of pathogen exposures may depend upon trade-offs in energetic demands for immune responses against host growth and survival. Environmental conditions may influence these trade-offs by affecting host size, or trade-offs may change across seasons, altering impacts of pathogens. We exposed northern leopard frog Lithobates pipiens tadpoles to different larval environments (low leaf litter, high density of conspecifics, atrazine, caged fish, or controls) that influenced size at metamorphosis. Subsequently, we exposed metamorphs to Batrachochytrium dendrobatidis (Bd), a fungal pathogen, just after metamorphosis and/or prior to overwintering 12 wk later. Bd exposure dramatically reduced survival during overwintering, with the strongest effects when hosts were exposed at both time points. Larval environments resulted in differences in host size. Those exposed to caged fish were 2.5 times larger than the smallest (those exposed to high density of conspecifics), but larval environment did not influence Bd effects on growth and survival. The largest frogs exposed to caged fish had greater survival through overwintering, but in the absence of Bd. We built stage-structured models to evaluate if overwinter mortality from Bd is capable of having effects on host populations. Our models suggest that Bd exposure after metamorphosis or before overwintering can reduce population growth rates. Our study demonstrates that hosts suffer little effects of Bd exposures following metamorphosis and that small body size did not hamper growth and survival. Instead, we provide evidence that winter mortality from Bd exposure is capable of reducing population sizes, providing a plausible mechanism for amphibian declines in temperate regions.


Assuntos
Quitridiomicetos , Micoses/veterinária , Ranidae/microbiologia , Estações do Ano , Envelhecimento , Animais , Larva , Micoses/mortalidade
14.
Environ Toxicol Chem ; 37(10): 2699-2704, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30035389

RESUMO

In areas with heavy pesticide use, it is easy to attribute population declines to environmental contamination. The Blanchard's cricket frogs (Acris blanchardi) is an amphibian experiencing declines and range contractions across its distribution in the Midwest Corn Belt (USA). Experimental studies suggest that cricket frogs are sensitive to pesticides, but there are few studies examining this species' susceptibility to contaminants in realistic environments or comparing relative impacts with other anuran species. I reared 3 summer breeding anurans in outdoor mesocosms posthatching through metamorphosis to examine the effects of 2 insecticides (imidacloprid and carbaryl) and 1 herbicide (glyphosate with polyoxyethylene tallow amine) on larval development and metamorphosis. Cricket frogs were positively affected by insecticide exposure, likely a result of changes in the food web that increased food abundance. However, metamorphosis of green frogs (Lithobates clamitans) and gray tree frogs (Hyla chrysoscelis) appeared unaffected by pesticide exposure. The results of the present study suggest that the impacts of pesticides alone are unlikely to have population-level impacts for the anurans examined. Environ Toxicol Chem 2018;37:2699-2704. © 2018 SETAC.


Assuntos
Anuros/crescimento & desenvolvimento , Ecossistema , Praguicidas/toxicidade , Rana clamitans/crescimento & desenvolvimento , Análise de Variância , Animais , Carbaril/toxicidade , Exposição Ambiental/análise , Glicina/análogos & derivados , Glicina/toxicidade , Herbicidas/toxicidade , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Polietilenoglicóis/toxicidade , Especificidade da Espécie , Fatores de Tempo , Glifosato
15.
Environ Toxicol Chem ; 37(2): 427-435, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29028124

RESUMO

We exposed Blanchard's cricket frogs (Acris blanchardi) to ecologically relevant concentrations (0, 0.1, 1, and 10 µg/L) of a commercial formulation of atrazine throughout the larval period to determine effects on survival, somatic growth and development (time to metamorphosis and mass at metamorphosis), and gonadal development (sex ratio at metamorphosis and the prevalence of testicular ova in phenotypic males). We tested the following hypotheses: 1) atrazine feminizes the sex ratio, 2) atrazine increases the proportion of phenotypic males with testicular ova, and 3) atrazine differentially affects somatic growth (mass at metamorphosis) and development (time to metamorphosis) for males and females. Although the control sex ratio was male-biased, exposure to 0.1 and 10 µg/L atrazine feminized sex ratios, because these treatments produced 51 and 55% fewer males than the control, respectively. We did not observe testicular ova. Atrazine did not impact survival or metamorphosis, and we did not detect sexually dimorphic impacts on time to metamorphosis or mass at metamorphosis. However, males metamorphosed 2.3 d later than females, regardless of treatment. Sex biases in timing of metamorphosis are underexplored in anurans, but if prevalent, could have important implications for theory surrounding the impact of environmental factors on metamorphosis. Our data suggest that cricket frog sex ratios are sensitive to environmentally relevant concentrations of atrazine and that feminization in the field is likely. Environ Toxicol Chem 2018;37:427-435. © 2017 SETAC.


Assuntos
Anuros/fisiologia , Atrazina/toxicidade , Feminização/patologia , Razão de Masculinidade , Animais , Feminino , Gônadas/efeitos dos fármacos , Gônadas/crescimento & desenvolvimento , Gônadas/patologia , Concentração de Íons de Hidrogênio , Limite de Detecção , Masculino , Metamorfose Biológica/efeitos dos fármacos , Análise Multivariada , Oxigênio/análise , Temperatura
16.
Ecol Evol ; 7(22): 9196-9202, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29187961

RESUMO

Understanding factors that influence host-pathogen interactions is key to predicting outbreaks in natural systems experiencing environmental change. Many amphibian population declines have been attributed to an amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd). While this fungus is widespread, not all Bd-positive populations have been associated with declines, which could be attributed to differences in pathogen virulence or host susceptibility. In a laboratory experiment, we examined the effects of Bd isolate origin, two from areas with Bd-associated amphibian population declines (El Copé, Panama, and California, USA) and two from areas without Bd-related population declines (Ohio and Maine, USA), on the terrestrial growth and survival of American toad (Anaxyrus americanus) metamorphs reared in larval environments with low or high intraspecific density. We predicted that (1) Bd isolates from areas experiencing declines would have greater negative effects than Bd isolates from areas without declines, and (2) across all isolates, growth and survival of smaller toads from high-density larval conditions would be reduced by Bd exposure compared to larger toads from low-density larval conditions. Our results showed that terrestrial survival was reduced for smaller toads exposed to Bd with variation in the response to different isolates, suggesting that smaller size increased susceptibility to Bd. Toads exposed to Bd gained less mass, which varied by isolate. Bd isolates from areas with population declines, however, did not have more negative effects than isolates from areas without recorded declines. Most strikingly, our study supports that host condition, measured by size, can be indicative of the negative effects of Bd exposure. Further, Bd isolates' impact may vary in ways not predictable from place of origin or occurrence of disease-related population declines. This research suggests that amphibian populations outside of areas experiencing Bd-associated declines could be impacted by this pathogen and that the size of individuals could influence the magnitude of Bd's impact.

17.
Environ Toxicol Chem ; 36(12): 3284-3288, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28657116

RESUMO

Studies of endocrine-disrupting contaminants have focused on early-life exposures, but later exposures could impact fitness. We exposed adult frogs (Acris blanchardi) at reproduction to ecologically relevant atrazine concentrations (0, 1, or 10 µg/L) in outdoor arenas. We measured likelihood of breeding and number of resulting tadpoles. Atrazine impacted neither the probability of breeding nor the number of tadpoles produced, suggesting anuran reproductive success may not be impacted by short-term exposure to low concentrations. Environ Toxicol Chem 2017;36:3284-3288. © 2017 SETAC.


Assuntos
Anuros/fisiologia , Atrazina/toxicidade , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Herbicidas/toxicidade , Reprodução/efeitos dos fármacos , Animais , Larva/efeitos dos fármacos , Larva/fisiologia
18.
Environ Toxicol Chem ; 36(7): 1917-1923, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27982495

RESUMO

Intraspecific variability in contaminant sensitivity could undermine risk assessments for nontarget organisms such as amphibians. To test how amphibian populations vary in tolerance to anticipated lethal and sublethal exposures to a pesticide, we exposed Blanchard's cricket frogs (Acris blanchardi) from 3 populations across a broad portion of their range to the insecticide malathion. Exposure in mesocosms to a nominal concentration of 1 mg/L (measured concentrations at 1 h and 24 h postaddition of 0.160 mg/L and 0.062 mg/L, respectively), a realistic direct-overspray scenario, reduced survival to metamorphosis by 43% relative to controls and revealed variation in tolerance among populations. Survival ranged from 74% for the most tolerant population to 18% for the least tolerant population, a 4.1-fold difference. Mass at metamorphosis and time to metamorphosis were unaffected. Although malathion reduced zooplankton abundance, it did not alter food resources (periphyton or phytoplankton relative abundance), or a suite of water-quality variables (pH, temperature, and dissolved oxygen). A 96-h time-to-death assay designed to isolate direct, lethal effects also revealed variation in tolerance among populations. Time to death (mean ± standard error) ranged from 2.4 ± 0.18 h for the least tolerant population to 17.8 ± 4.72 h for the most tolerant population, a 7.4-fold difference. However, relative sensitivities of populations differed in the mesocosm and laboratory studies, which differed in exposure concentrations, suggesting that populations tolerant of high concentrations can be more sensitive to lower concentrations. We suggest that direct overspray could reduce larval survival in the field for this species. Studies assessing the role of contaminants in declines or extrapolating to untested populations, especially across large geographical regions, should quantify the range of intraspecific variation. Risk assessors could address intraspecific variability directly by using an intraspecific uncertainty factor. Environ Toxicol Chem 2017;36:1917-1923. © 2016 SETAC.


Assuntos
Inseticidas/toxicidade , Malation/toxicidade , Metamorfose Biológica/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Anuros/crescimento & desenvolvimento , Anuros/fisiologia , Concentração de Íons de Hidrogênio , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/fisiologia , Modelos Lineares , Medição de Risco , Temperatura , Poluentes Químicos da Água/química , Zooplâncton/efeitos dos fármacos , Zooplâncton/crescimento & desenvolvimento
19.
Environ Toxicol Chem ; 33(11): 2545-50, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25098758

RESUMO

Chytridiomycosis, a disease caused by Batrachochytrium dendrobatidis (Bd), has been implicated as a cause of amphibian declines. Susceptibility may be influenced by environmental factors that suppress the immune response. The authors conducted a laboratory study to examine the effect of temperature, insecticide exposure, and Bd exposure during larval anuran development. The authors examined the consequences of exposure to Bd, an insecticide (carbaryl or malathion), and static or fluctuating temperature (15 °C, 20 °C, 25 °C, or 15 °C to 25 °C 72-h flux) on larval development through metamorphosis of the Pacific treefrog (Pseudacris regilla). High and fluctuating temperature had negative effects on survival in the presence of Bd. Insecticides inhibited the effects of Bd; time to tail resorption of Pacific treefrogs decreased when tadpoles were exposed to carbaryl. The present study indicates that abiotic factors may play a role in the host-pathogen interactions in this system.


Assuntos
Anuros/crescimento & desenvolvimento , Quitridiomicetos , Inseticidas/efeitos adversos , Larva/efeitos dos fármacos , Metamorfose Biológica/efeitos dos fármacos , Micoses/microbiologia , Animais , Anuros/microbiologia , Carbaril/efeitos adversos , Interações Hospedeiro-Patógeno , Malation/efeitos adversos , Reação em Cadeia da Polimerase , Temperatura , Fatores de Tempo
20.
Environ Toxicol Chem ; 33(11): 2541-4, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25099070

RESUMO

Abiotic factors such as pesticides may alter the impact of a pathogen on hosts, which could have implications for host-pathogen interactions and may explain variation in disease outbreaks in nature. In the present laboratory experiment, American toad (Anaxyrus americanus) metamorphs were exposed to the amphibian chytrid fungal pathogen Batrachochytrium dendrobatidis (Bd) and environmentally relevant concentrations of the insecticide malathion to determine whether malathion altered the effects of Bd exposure on growth and survival of toad metamorphs. Exposure to Bd significantly decreased survival over the 51 d of the experiment, suggesting that Bd could reduce recruitment into the terrestrial life stage when exposure occurs at metamorphosis. Malathion did not impact survival, but a 12-h exposure at metamorphosis significantly reduced terrestrial growth. Toads that were exposed to both Bd and malathion showed a nonsignificant trend toward the smallest growth compared with other treatments. The present study suggests that Bd may pose a threat to American toads even though population declines have not been observed for this species; in addition, the presence of both the insecticide malathion and Bd could reduce terrestrial growth, which could have implications for lifetime fitness and suggests that environmental factors could play a role in pathogen impacts in nature.


Assuntos
Bufonidae/microbiologia , Quitridiomicetos , Inseticidas/efeitos adversos , Malation/efeitos adversos , Metamorfose Biológica/efeitos dos fármacos , Praguicidas/efeitos adversos , Animais , Interações Hospedeiro-Patógeno , Fatores de Tempo , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...