Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(51): 18807-18814, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38095420

RESUMO

Human haptic perception relies on the ability of sensory receptors underneath the skin corneocyte layer to sense external load, where adhesion and friction play an essential role in nanoscale solid-solid contact. Energy dissipation present at the surface interface due to the change of separation distance during sliding contact was uncovered, but the energy dissipation of human finger skin cell-nanoprobe contact under humidity and temperature conditions has not been investigated yet. In this paper, the energy dissipation of skin corneocyte-nanoprobe interface under variation of both humidity, 0.05-80%RH, and temperature ranging from 25 to 40 °C is directly measured by atomic force microscopy (AFM). Analytical models of dissipation energy for this nanomaterial interface mechanism are developed, and the results are compared to the measured values. AFM measurements of dissipation energy reveal that the amount of dissipated energy caused by water meniscus stretching monotonically increases with humidity and temperature, resulting in adhesion and friction decreases. The purposed analytical model represents that dissipation energy trend.


Assuntos
Pele , Humanos , Temperatura , Umidade , Microscopia de Força Atômica/métodos , Fricção
2.
Beilstein J Nanotechnol ; 14: 1200-1207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116471

RESUMO

AFM sharp tips are used to characterize nanostructures and quantify the mechanical properties of the materials in several areas of research. The analytical results can show unpredicted errors if we do not know the exact values of the AFM tip radius. There are many techniques of in situ measurements for determining the actual AFM tip radius, but they are limited to uncoated tips. This paper presents an alternative and simple method to determine the radii of coated tips and an uncoated tip. Pt-coated, Cr/Au-coated, and uncoated Si tips were used to scan a calibration standard grating in AFM contact mode with sub-nanonewton load to obtain the curved scan profile of the edge corner of the grating structure. The data points of the curved profile of each tip were fitted with a nonlinear regression function to estimate the curvature radius of the tip. The results show that the estimated radius of the coated tips is in the range of nominal values provided by the tip manufacturer, while the estimated radius of the uncoated Si tip is bigger than the nominal radius because of tip blunting during the scan. However, this method yields an accurate estimate of the tip radius with a low root mean squared error of the curve fitting results.

3.
Langmuir ; 37(14): 4056-4063, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33793250

RESUMO

A large subset of haptic surfaces employs electroadhesion to modulate both adhesion and friction at a sliding finger interface. The current theory of electroadhesion assumes that the applied electric field pulls the skin into stronger contact, increasing friction by increasing the real contact area, yet it is unknown what role environmental moisture plays in the effect. This paper uses atomic force microscopy (AFM)to determine the effect of humidity on the adhesion and friction between the single nanoscale asperity and individual human finger corneocytes. An analytical model of the total effective load of the AFM tip is developed to explain the humidity-voltage dependence of nanoscale adhesion and friction at contacting asperities. The results show that the electrowetting effect at the interface at high humidity accounts for 35% of the adhesive force but less than 8% of the total friction, implying that the electrowetting effect can be enhanced by optimizing surface topography to promote the formation and rupture of liquid menisci.


Assuntos
Eletroumectação , Fricção , Nanoestruturas/química , Pele/citologia , Humanos , Umidade , Microscopia de Força Atômica
4.
IEEE Trans Haptics ; 13(3): 522-529, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32149656

RESUMO

With the commercialization of haptic devices, understanding behavior under various environmental conditions is crucial for product optimization and cost reduction. Specifically, for surface haptic devices, the dependence of the friction force and the electroadhesion effect on the environmental relative humidity and the finger hydration level can directly impact their design and performance. This article presents the influence of relative humidity on the finger-surface friction force and the electroadhesion performance. Mechanisms including changes to Young's modulus of skin, contact angle change and capillary force were analyzed separately with experimental and numerical methods. Through comparison of the calculated capillary force in this paper and the electroadhesion force calculated in published papers, it was found that electrowetting at high voltage could contribute up to 60% of the total friction force increase in electroadhesion. Therefore, in future design of surface haptic devices, the effect of electrowetting should be considered carefully.


Assuntos
Eletroumectação , Dedos , Fenômenos Físicos , Tato , Interface Usuário-Computador , Fricção , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...