Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474469

RESUMO

Diacetylcurcumin manganese complex (DiAc-Cp-Mn) is a diacetylcurcumin (DiAc-Cp) derivative synthesized with Mn (II) to mimic superoxide dismutase (SOD). It exhibited superior reactive oxygen species (ROS) scavenging efficacy, particularly for the superoxide radical. The present study investigated the ROS scavenging activity, neuroprotective effects, and underlying mechanism of action of DiAc-Cp-Mn in a cellular model of Parkinson's disease. This study utilized rotenone-induced neurotoxicity in SH-SY5Y cells to assess the activities of DiAc-Cp-Mn by measuring cell viability, intracellular ROS, mitochondrial membrane potential (MMP), SOD, and catalase (CAT) activities. The mRNA expression of the nuclear factor erythroid 2 p45-related factor (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), inducible nitric oxide synthase (iNOS), and Interleukin 1ß (IL-1ß), which are oxidative and inflammatory genes, were also evaluated to clarify the molecular mechanism. The results of the in vitro assays showed that DiAc-Cp-Mn exhibited greater scavenging activity against superoxide radicals, hydrogen peroxide, and hydroxyl radicals compared to DiAc-Cp. In cell-based assays, DiAc-Cp-Mn demonstrated greater neuroprotective effects against rotenone-induced neurotoxicity when compared to its parent compound, DiAc-Cp. DiAc-Cp-Mn maintained MMP levels, reduced intracellular ROS levels, and increased the activities of SOD and CAT by activating the Nrf2-Keap1 signaling pathway. In addition, DiAc-Cp-Mn exerted its anti-inflammatory impact by down-regulating the mRNA expression of iNOS and IL-1ß that provoked neuro-inflammation. The current study indicates that DiAc-Cp-Mn protects against rotenone-induced neuronal damage by reducing oxidative stress and inflammation.


Assuntos
Curcumina/análogos & derivados , Doenças Mitocondriais , Neuroblastoma , Fármacos Neuroprotetores , Síndromes Neurotóxicas , Doença de Parkinson , Humanos , Manganês/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fármacos Neuroprotetores/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Inflamação , Superóxido Dismutase/metabolismo , Antioxidantes/farmacologia , RNA Mensageiro/genética
2.
Nat Prod Res ; : 1-10, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501726

RESUMO

The first investigation of the phytochemical profile of the flowers of Croton krabas led to the isolation of two new clerodane diterpenes, 6S-crotocaudin (1) and crotocaudin B (2), together with two known clerodanes, 6S-crotoeurin C (3) and isoteucvin (4). The structures and absolute configurations of isolated clerodanes were elucidated by extensive analysis of NMR spectroscopic data, mass spectrometry and ECD calculations. Compounds 1-4 demonstrated significant inhibitory activity towards acetylcholinesterase (AChE). Notably, compound 2 exhibited the strongest AChE inhibition (IC50 1.01 µM). Compounds 3 and 4 showed potent butyrylcholinesterase (BChE) inhibitory activity with IC50 values of 1.09 and 1.12 µM, respectively. The molecular docking results revealed that 2 bound to the catalytic anionic site (CAS) and peripheral anionic site (PAS) of AChE, while 3 occupied in the CAS of BChE.

3.
Molecules ; 29(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276581

RESUMO

Aging is a well-known factor that accelerates brain deterioration, resulting in impaired learning and memory functions. This current study evaluated the potential of an extract of Alternanthera philoxeroides (AP), an edible flavonoid-rich plant, to ameliorate D-galactose-induced brain aging in male mice. Chronic administration of D-galactose (150 mg/kg/day) in mice mimicked the characteristics of aging by accelerating senescence via downregulation of the following telomere-regulating factors: mouse telomerase reverse transcriptase (mTERT) and mouse telomeric repeat-binding factors 1 (mTRF1) and 2 (mTRF2). D-galactose also decreased the activities of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD), while increasing expression of neuroinflammatory cytokines in the frontal cortex and hippocampus. Daily treatment of D-galactose-induced aging mice with AP at 250 and 500 mg/kg/day or vitamin E (100 mg/kg/day) significantly increased the activities of SOD and CAT, as well as expression of mTERT, mTRF1, and mTRF2, which are involved in telomere stabilization, but decreased the levels of proinflammatory cytokines IL-1ß, IL-6, and TNF-α. In the behavioral portion of the study, AP improved aging-related cognitive deficits in short-term memory as shown by the Y-maze task and the novel object recognition test (NORT) and long-term memory as shown by the Morris water maze test (MWMT). The flavones kaempferol-O-glucoside (1), quercetin (2), alternanthin B (3), demethyltorosaflavone D (4), and chrysoeriol-7-O-rhamnoside (5), which could be responsible for the observed effects of AP in the D-galactose-induced aging mice, were identified by HPLC analysis.


Assuntos
Antioxidantes , Galactose , Camundongos , Animais , Antioxidantes/metabolismo , Galactose/metabolismo , Encurtamento do Telômero , Doenças Neuroinflamatórias , Aprendizagem em Labirinto , Envelhecimento , Encéfalo/metabolismo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Superóxido Dismutase/metabolismo , Citocinas/metabolismo , Estresse Oxidativo
4.
Heliyon ; 9(11): e21894, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38106662

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive impairment and neuronal death. Fifteen flavonoids from Millettia brandisiana were evaluated for the multifunctional effect against AD pathogenesis, including butyrylcholine esterase (BuChE) inhibition, anti-amyloid beta (Aß) aggregation and neuroprotection against hydrogen peroxide (H2O2) toxicity in differentiated human neuroblastoma SH-SY5Y cell. To understand the mechanism and structure-activity relationship, binding interactions between flavonoids and the BuChE and Aß were investigated in silico. Furthermore, drug-likeness properties and ADMET parameters were evaluated in silico using SwissADME and pKCSM tools. All flavonoids exhibit a good drug-likeness profile. Six flavonoids have potency in BuChE inhibition, and four flavonoids show potency in anti-Aß aggregation. Flavonoids with the 6″,6″-dimethylchromeno- [2″,3″:7,8]-flavone structure show a favorable multifunctional effect. In silico analysis showed that flavonoids can bind in various positions to the catalytic triad, anionic site, and acyl pocket. In Aß1-42, potential flavonoids can attach to the central hydrophobic region and the C terminal hydrophobic and interfere with Aß interchain hydrogen binding. When compared together, it can inhibit multifunctional action with a favorable ADMET parameter and drug-likeness profile. In addition, candidine can prevent neuronal damage in differentiated SH-SY5Y neuroblastoma cells induced by H2O2 in a dose-dependent manner.

5.
Nutrients ; 15(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38004136

RESUMO

Major depressive disorder (MDD) is one life-threatening disorder that is prevalent worldwide. The evident etiology of this disease is still poorly understood. Currently, herbal medicine is gaining more interest as an alternative antidepressant. Oroxylum indicum, which is used in traditional medicine and contains a potential antidepressive compound, baicalein, could have an antidepressive property. An in vitro monoamine oxidase-A (MAO-A) inhibitory assay was used to preliminarily screening for the antidepressant effect of O. indicum seed (OIS) extract. Mice were subjected to unpredictable chronic mild stress (UCMS) for 6 weeks, and the daily administration of OIS extract started from week 4. The mechanisms involved in the antidepressive activity were investigated. The OIS extract significantly alleviated anhedonia and despair behaviors in the UCMS-induced mouse model via two possible pathways: (i) it normalized the HPA axis function via the restoration of negative feedback (decreased FKBP5 and increased GR expressions) and the reduction in the glucocorticoid-related negative gene (SGK-1), and (ii) it improved neurogenesis via the escalation of BDNF and CREB expressions in the hippocampus and the frontal cortex. In addition, an HPLC analysis of the OIS extract showed the presence of baicalin, baicalein, and chrysin as major constituents. All of the results obtained from this study emphasize the potential of OIS extract containing baicalin and baicalein as an effective and novel alternative treatment for MDD.


Assuntos
Transtorno Depressivo Maior , Extratos Vegetais , Camundongos , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Transtorno Depressivo Maior/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Antidepressivos/farmacologia , Sementes , Hipocampo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Depressão/metabolismo , Modelos Animais de Doenças
6.
Chem Biodivers ; 20(12): e202301309, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926685

RESUMO

Chromatographic separation of the leaves of Croton krabas resulted in the isolation of one new clerodane, crotoeurin D (1), along with two known compounds, 6S-crotoeurin C (2) and blumenol A (3). Their structures were determined based on extensive nuclear magnetic resonance spectroscopic data analysis and mass spectrometry. The absolute configuration of the new clerodane was assigned by nuclear overhauser effect spectroscopy correlations and electronic circular dichroism calculations. Compound 1 exhibited significant acetylcholinesterase and butyrylcholinesterase inhibitory activities. Moreover, the binding modes of 1 revealed that its structure formed strong hydrogen bonds and hydrophobic interactions with the active sites of both enzymes.


Assuntos
Croton , Diterpenos Clerodânicos , Diterpenos Clerodânicos/farmacologia , Diterpenos Clerodânicos/química , Croton/química , Acetilcolinesterase , Butirilcolinesterase , Estrutura Molecular
7.
Molecules ; 28(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37836716

RESUMO

Supercritical fluid extraction (SFE) is an innovative green technology for the extraction of phytochemicals from plants. Therefore, this study aimed to evaluate the application of SFE and to optimize the extraction conditions of the Thai herbal formula, Kleeb Bua Daeng (KBD). A Box-Behnken design (BBD) with response surface methodology (RMS) was used to determine the effect of the extraction time (30-90 min), temperature (30-60 °C), and pressure (200-300 bar) on response variables including the extraction yield, total phenolic content (TPC), total flavonoid content (TFC), total carotenoid content (TCC), and total anthocyanin content (TAC) of the KBD formula. The highest percentage extraction yield (3.81%) was achieved at 60 °C, 300 bar, and 60 min of the extraction time. The highest TPC (464.56 mg gallic acid equivalents/g extract), TFC (217.19 mg quercetin equivalents/g extract), and TCC (22.26 mg ß-carotene equivalents/g extract) were all achieved at 60 °C, 250 bar, and 90 min of the extraction time. On the contrary, it was not possible to quantify the total anthocyanin content as anthocyanins were not extracted by this method. The results indicated that SFE-CO2 is a suitable method of extraction for a green recovery of phytochemicals with low and moderate polarity from the KBD formula.


Assuntos
Dióxido de Carbono , Cromatografia com Fluido Supercrítico , Dióxido de Carbono/química , Antocianinas , Carotenoides , Fenóis/análise , Extratos Vegetais/química , Cromatografia com Fluido Supercrítico/métodos
8.
Biol Pharm Bull ; 46(8): 1072-1078, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37331805

RESUMO

A cytokine known as tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has the ability to precisely cause the death of cancer cells, while normal cells are left undisturbed. Recent studies show that certain cancer cells are sensitive to the apoptotic effect of TRAIL. In this study, HT29 colorectal adenocarcinoma cells exposed to TRAIL were treated with heptaphylline and 7-methoxyheptaphylline from Clausena harmandiana in an effort to comprehend the mechanisms involved behind this activity. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) test was utilized to determine cell survival, and phase contrast microscopy was used to examine cell morphology. Through using real-time RT-PCR, Western blotting, and RT-PCR, the molecular mechanisms were investigated. According to the findings, whilst hepataphylline caused cytotoxicity in normal colon FHC cells, in comparison to healthy colon FHC cells, 7-methoxyheptaphylline inhibited cancer cells in a concentration-dependent manner. Heptaphylline alone or in conjunction with TRAIL showed no discernible effect on TRAIL-induced HT29 cell death, but 7-methoxyheptaphylline boosted caspase-3 cleavage. The study showed that the c-Jun N-terminal kinase (JNK) pathway was responsible for the 7-methoxyheptaphylline's enhancement of the death receptor 5 (DR5) mRNA, TRAIL receptor, and protein. The results demonstrated that the 7-methoxyheptaphylline of Clausena harmandiana increased the expression of DR5 via the JNK pathway, intensifying TRAIL-induced HT29 cell death.


Assuntos
Adenocarcinoma , Neoplasias Colorretais , Humanos , Apoptose , Adenocarcinoma/tratamento farmacológico , Morte Celular , Neoplasias Colorretais/tratamento farmacológico , Linhagem Celular Tumoral
9.
Curr Issues Mol Biol ; 45(5): 4063-4079, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37232728

RESUMO

The effects of Mesua ferrea Linn flower (MFE) extract on the pathogenic cascade of Alzheimer's disease (AD) were determined by an in vitro and cell culture model in the search for a potential candidate for the treatment of AD. The 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay exhibited that the MFE extract had antioxidant activities. According to the Ellman and the thioflavin T method's result, the extracts could inhibit acetylcholinesterase and ß-amyloid (Aß) aggregation. Studies on neuroprotection in cell culture found that the MFE extract could reduce the death of human neuroblastoma cells (SH-SY5Y) caused by H2O2 and Aß. Western blot analysis exhibited that the MFE extract alleviated H2O2-induced neuronal cell damage by downregulating the pro-apoptotic proteins, including cleaved caspase-3, Bax, and by enhancing the expression of anti-apoptotic markers including MCl1, BClxl, and survivin. Moreover, MFE extract inhibited the expression of APP, presenilin 1, and BACE, and increased the expression of neprilysin. In addition, the MFE extract could enhance scopolamine-induced memory deficit in mice. Overall, results showed that the MFE extract had several modes of action related to the AD pathogenesis cascade, including antioxidants, anti-acetylcholinesterase, anti-Aß aggregation, and neuroprotection against oxidative stress and Aß. Therefore, the M. ferrea L. flower might be a possibility for further development as a medication for AD.

10.
Oncol Rep ; 49(1)2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36416312

RESUMO

7­Methoxyheptaphylline (7­MH) is a carbazole extracted from Clausena harmandiana, a medicinal plant that is used to treat headaches and stomachaches. The aim of the present study was to examine the neuroprotective effects and anticancer activity of 7­MH. Cell death was assessed using an MTT assay and flow cytometry. The expression of apoptosis­related proteins was determined by western blot analysis. An animal model was used to test anti­metastasis. The interactions between 7­MH and the molecular target were observed using molecular docking. The results revealed that 7­MH provided protection against hydrogen peroxide (H2O2)­induced neuronal cell death. In cancer cells, 7­MH induced SH­SY5Y, 4T1, HT29, HepG2, and LNCaP cell death. 7­MH inhibited metastasis of HT29 cells in vitro and 4T1­Luc cells in vitro and in vivo. 7­MH inhibited proteins, including P­glycogen synthase kinase (GSK)­3, and cleaved caspase­3, but it activated anti­apoptotic proteins in H2O2­induced SH­SY5Y cell death. By contrast, 7­MH activated the cleaving of caspase­3 and GSK­3, but it suppressed anti­apoptotic proteins in SH­SY5Y cells. 7­MH reduced the levels of NF­κB and STAT3 in 4T1 cells; phospho­p65, Erk, and MAPK13 in LNCaP cells; and phospho­Erk and matrix metalloproteinase­9 in HT29 cells. Molecular docking analysis showed that 7­MH targets TAK1 kinase. The present study indicated that 7­MH induced apoptosis of cancer cells and provided protection against H2O2­induced neuron cell death via TAK1 kinase.


Assuntos
Peróxido de Hidrogênio , Neuroblastoma , Animais , Humanos , Caspase 3/metabolismo , Peróxido de Hidrogênio/farmacologia , Quinase 3 da Glicogênio Sintase , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Neuroblastoma/metabolismo , Carbazóis/farmacologia
11.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36015135

RESUMO

Kleeb Bua Daeng (KBD) formula has long been used in Thailand as a traditional herbal medicine for promoting brain health. Our recent reports illustrated that KBD demonstrates multiple modes of action against several targets in the pathological cascade of Alzheimer's disease (AD). The main purpose of the present study was to determine the protective effect and mechanism of KBD in amyloid beta (Aß)-induced AD rats and its toxicity profiles. Pretreatment with the KBD formula for 14 days significantly improved the short- and long-term memory performance of Aß-induced AD rats as assessed by the Morris Water Maze (MWM) and object-recognition tests. KBD treatment increased the activities of the antioxidant enzymes catalase, superoxide dismutase, and glutathione peroxidase; reduced the malondialdehyde content, and; decreased the acetylcholinesterase activity in the rat brain. An acute toxicity test revealed that the maximum dose of 2000 mg/kg did not cause any mortality or symptoms of toxicity. An oral, subchronic toxicity assessment of KBD at doses of 125, 250, and 500 mg/kg body weight/day for 90 days showed no adverse effects on behavior, mortality, hematology, or serum biochemistry. Our investigations indicate that KBD is a nontoxic traditional medicine with good potential for the prevention and treatment of AD.

12.
Curr Issues Mol Biol ; 44(8): 3681-3694, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36005148

RESUMO

This study was designed to investigate the effects of the root-bark extract of Clausena harmandiana (CH) and its active constituents (nordentatin and 7-methoxyheptaphylline) on pharmacological activities regarding selected targets associated with AD, namely, its antioxidant activity, inhibition of Aß aggregation, acetylcholinesterase (AChE) activity, and neuroprotective effects. The effect of the CH extract on the cognitive impairment induced by scopolamine was also evaluated in mice. The effects of the CH extract and its active constituents on radical scavenging, Aß aggregation, and AChE activity were investigated with a 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) assay, a thioflavin-T assay, and Ellman's method. The neuroprotective effects of the extract against hydrogen-peroxide and Aß toxicity were evaluated with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. In addition, the effects on cognitive impairment induced by scopolamine in mice were evaluated using Morris-water-maze and modified-Y-maze test models. The results of the present study demonstrate that the root-bark extract of CH shows multimodal actions relevant to the AD pathological cascade, including antioxidant effects, the inhibition of Aß aggregation, the inhibition of AChE function, and neuroprotection against oxidative stress and Aß toxicity. The extracts could improve both the short- and long-term memory deficits induced by scopolamine in mice.

13.
Molecules ; 27(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35807554

RESUMO

Cognitive impairment is a neurological symptom caused by reduced estrogen levels in menopausal women. The Thai traditional medicine, Yakae-Prajamduen-Jamod (YPJ), is a formula consisting of 23 medicinal herbs and has long been used to treat menopausal symptoms in Thailand. In the present study, we investigated the effects of YPJ on cognitive deficits and its underlying mechanisms of action in ovariectomized (OVX) mice, an animal model of menopause. OVX mice showed cognitive deficits in the Y-maze, the novel object recognition test, and the Morris water maze. The serum corticosterone (CORT) level was significantly increased in OVX mice. Superoxide dismutase and catalase activities were reduced, while the mRNA expression of IL-1ß, IL-6, and TNF-α inflammatory cytokines were up-regulated in the frontal cortex and hippocampus of OVX mice. These alterations were attenuated by daily treatment with either YPJ or 17ß-estradiol. HPLC analysis revealed that YPJ contained antioxidant and phytoestrogen constituents including gallic acid, myricetin, quercetin, luteolin, genistein, and coumestrol. These results suggest that YPJ exerts its ameliorative effects on OVX-induced cognitive deficits in part by mitigating HPA axis overactivation, neuroinflammation, and oxidative brain damage. Therefore, YPJ may be a novel alternative therapeutic medicine suitable for the treatment of cognitive deficits during the menopausal transition.


Assuntos
Disfunção Cognitiva , Sistema Hipotálamo-Hipofisário , Animais , Antioxidantes/farmacologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Ovariectomia , Sistema Hipófise-Suprarrenal , Tailândia
14.
Molecules ; 27(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35744993

RESUMO

The present study aimed to investigate the effect of acridone alkaloids on cancer cell lines and elucidate the underlying molecular mechanisms. The ten acridone alkaloids from Atalantia monophyla were screened for cytotoxicity against LNCaP cell lines by a WST-8 assay. Then, the most potential acridone, buxifoliadine E, was evaluated on four types of cancer cells, namely prostate cancer (LNCaP), neuroblastoma (SH SY5Y), hepatoblastoma (HepG2), and colorectal cancer (HT29). The results showed that buxifoliadine E was able to significantly inhibit the proliferation of all four types of cancer cells, having the most potent cytotoxicity against the HepG2 cell line. Western blotting analysis was performed to assess the expression of signaling proteins in the cancer cells. In HepG2 cells, buxifoliadine E induced changes in the levels of Bid as well as cleaved caspase-3 and Bax through MAPKs, including Erk and p38. Moreover, the binding interaction between buxifoliadine E and Erk was investigated by using the Autodock 4.2.6 and Discovery Studio programs. The result showed that buxifoliadine E bound at the ATP-binding site, located at the interface between the N- and C-terminal lobes of Erk2. The results of this study indicate that buxifoliadine E suppressed cancer cell proliferation by inhibiting the Erk pathway.


Assuntos
Alcaloides , Neoplasias , Rutaceae , Acridonas/química , Acridonas/farmacologia , Alcaloides/química , Alcaloides/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Sistema de Sinalização das MAP Quinases , Rutaceae/química
15.
Curr Issues Mol Biol ; 44(3): 1062-1074, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35723293

RESUMO

Cancer is caused by abnormal cell changes leading to uncontrolled cell growth. The specific characteristics of cancer cells, including the loss of apoptotic control and the ability to migrate into and invade the surrounding tissue, result in cancer cell metastasis to other parts of the body. Therefore, the inhibition of the proliferation, migration, and invasion of cancer cells are the principal goals in the treatment of cancer. This study aimed to investigate the inhibitory activity of nordentatin, a coumarin derivative isolated from Clausena harmandiana, regarding the proliferation and migration of human neuroblastoma cells (SH-SY5Y). Nordentatin at a concentration of 100 µM showed cell cytotoxicity toward SH-SY5Y that was significantly different from that of the control group (p < 0.01) at 24, 48, and 72 h. Moreover, nordentatin inhibited SH-SY5Y proliferation by inhibiting the antiapoptotic protein Mcl-1, leading to the cleavage of caspase-3 and resulting in the inhibition of a migratory protein, MMP-9, through the GSK-3 pathway (compared with cells treated with a GSK inhibitor). These results suggest that nordentatin inhibited the proliferation and migration of neuroblastoma cells through the GSK-3 pathway.

16.
Biomed Pharmacother ; 153: 113310, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35728351

RESUMO

Pain is the most common presenting physical symptom and a primary reason for seeking medical care, which chronically affects people's mental health and social life. CaV3.2 channel plays an essential role in the peripheral processing maintenance of pain states. This study was designed to identify novel drug candidates targeting the CaV3.2 channel. Whole-cell patch-clamp, cellular thermal shift assay, FlexStation, in vivo and in vitro CaV3.2 knock-down, site-directed mutagenesis, and double-mutant cycle analysis were employed to explore the pain-related receptors and ligand-receptor direct interaction. We found that toddaculin efficiently inhibits the CaV3.2 channel and significantly reduced the excitability of dorsal root ganglion neurons and pain behaviors. The Carbonyl group of coumarins directly interacts with the pore domain of CaV3.2 via van der Waals (VDW) force. Docking with binding pockets further led us to identify glycycoumarin, which exhibited more potent inhibition on the CaV3.2 channel and better analgesic activity than the parent compound. Toddaculin and its analog showed beneficial therapeutic effects in pain models. Toddaculin binding pocket on CaV3.2 might be a promising docking site for the design of drugs.


Assuntos
Canais de Cálcio Tipo T , Dor Crônica , Analgésicos/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Canais de Cálcio Tipo T/metabolismo , Dor Crônica/tratamento farmacológico , Dor Crônica/metabolismo , Gânglios Espinais/metabolismo , Humanos , Neurônios/metabolismo
17.
Molecules ; 27(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35566362

RESUMO

The present study describes investigation of the effects of the bark resin extract of Garcinia nigrolineata (Clusiaceae) on the cognitive function and the induction of oxidative stress in both frontal cortex and hippocampus by unpredictable chronic mild stress (UCMS). By using behavioral mouse models, i.e., the Y-maze test, the Novel Object Recognition Test (NORT), and the Morris Water Maze Test (MWMT), it was found that the negative impact of repeated mild stress-induced learning and memory deficit through brain oxidative stress in the UCMS mice was reversed by treatment with the bark resin extract G. nigrolineata. Moreover, the prenylated xanthones viz. cowagarcinone C, cowaxanthone, α-mangostin, cowaxanthone B, cowanin, fuscaxanthone A, fuscaxanthone B, xanthochymusxanthones A, 7-O-methylgarcinone E, and cowagarcinone A, isolated from the bark resin of G. nigrolineata, were assayed for their inhibitory activities against ß-amyloid (Aß) aggregation and monoamine oxidase enzymes (MAOs).


Assuntos
Garcinia , Xantonas , Peptídeos beta-Amiloides , Animais , Modelos Animais de Doenças , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Camundongos , Monoaminoxidase , Casca de Planta , Extratos Vegetais/farmacologia , Resinas Vegetais , Xantonas/farmacologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-35368763

RESUMO

Individuals with mild cognitive impairment (MCI) were at increased risk of conversion to dementia. The Kleeb Bua Daeng (KBD) formula could be the alternative treatment option for MCI through multitarget activities. Lacking of clinical trial information brought about the study in our research. Forty patients with MCI were randomly assigned to receive the KBD capsule or placebo at a dose of 1,000 mg twice a day for three months. Their cognitive functions were monitored by the Montreal Cognitive Assessment (MoCA) and blood chemistry assessment every one month. We found that the KBD-treated group had no significant differences in the MoCA test compared to placebo. Moreover, there was no alteration in biochemical parameters of the liver and renal function was observed which could confirm the safety of this KBD formula.

19.
BMC Complement Med Ther ; 22(1): 108, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35439990

RESUMO

BACKGROUND: Alzheimer's disease (AD) pathogenesis is associated with amyloid-ß (Aß)-induced neuroinflammation. In AD, the activation of microglia caused by Aß accumulation is followed by the synthesis and release of pro-inflammatory cytokines, including interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNFα), and ultimately leads to cognitive impairments. Clausena harmandiana (CH) is a medicinal plant in the Rutaceae family and has been used in folk medicine to relieve illnesses such as stomachache and headache, and as a health tonic. Interestingly, CH root extract (CHRE) has several anti-inflammatory and other pharmacological activities, but there are no studies in AD-like animal models. OBJECTIVES: This study aims to evaluate the effects of CHRE on cognitive impairments, increased Aß1-42 protein levels, and neuroinflammation in Aß1-42-induced rats. METHODS: Forty-eight adult male Sprague-Dawley rats (250-300 g) were randomly divided into 6 groups (n = 8) of the sham control, V + Aß, CB + Aß CHRE125 + Aß, CHRE250 + Aß, and CHRE500 + Aß. Sodium carboxymethylcellulose, Celebrex (10 mg/kg BW) and CHRE (125, 250, and 500 mg/kg BW) were given orally or without any treatment for 35 days. On day 21, aggregated Aß1-42 at a concentration of 1 µg/µl were injected into both lateral ventricles (1 µl/side) of all treated rats, while sterilized normal saline were injected to untreated rats. Ten days later, the novel object recognition test was performed to assess their recognition memory. At the end of the test period, an overdose of thiopental sodium (120 mg/kg BW) and transcardial perfusion with 0.9% normal saline solution were used to euthanize all rats. Then Aß1-42 protein levels and the expression of inflammatory markers (CD11b-positive microglia, IL-1ß, and TNFα) were investigated in the cerebral cortex and hippocampus. RESULTS: Pretreatment with CHRE at all doses could attenuate short- and long-term impairments in recognition memory. Additionally, CHRE also inhibited the increase of Aß1-42 protein levels and the expression of inflammatory markers in both brain regions as well as receiving Celebrex. CONCLUSIONS: This suggests that preventive treatment of CHRE might be a potential therapy against cognitive impairments via reducing Aß1-42 protein levels and neuroinflammation caused by Aß1-42.


Assuntos
Doença de Alzheimer , Clausena , Disfunção Cognitiva , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/toxicidade , Animais , Celecoxib , Clausena/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Masculino , Doenças Neuroinflamatórias , Fragmentos de Peptídeos/toxicidade , Extratos Vegetais/uso terapêutico , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
20.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34577588

RESUMO

Ten acridones isolated from Atalantia monophylla were evaluated for effects on Alzheimer's disease pathogenesis including antioxidant effects, acetylcholinesterase (AChE) inhibition, prevention of beta-amyloid (Aß) aggregation and neuroprotection. To understand the mechanism, the type of AChE inhibition was investigated in vitro and binding interactions between acridones and AChE or Aß were explored in silico. Drug-likeness and ADMET parameters were predicted in silico using SwissADME and pKCSM programs, respectively. All acridones showed favorable drug-likeness and possessed multifunctional activities targeting AChE function, Aß aggregation and oxidation. All acridones inhibited AChE in a mixed-type manner and bound AChE at both catalytic anionic and peripheral anionic sites. In silico analysis showed that acridones interfered with Aß aggregation by interacting at the central hydrophobic core, C-terminal hydrophobic region, and the key residues 41 and 42. Citrusinine II showed potent multifunctional action with the best ADMET profile and could alleviate neuronal cell damage induced by hydrogen peroxide and Aß1-42 toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...