Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neotrop Entomol ; 52(5): 781-801, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37656417

RESUMO

Since 1890, many observations of danaine butterflies visiting dry plants of several families in the Old and New World tropics have been published. For 50 years, it has been recognised that Danainae, along with various other insects, seek out 1,2-dehydropyrrolizidine ester alkaloids (PAs) independently of and in addition to their nutritive requirements and utilise them to increase their chances for survival and biological fitness. This represents an unusual type of insect-plant relationship ("PA-pharmacophagy"), with remarkable peculiarities but also with gaps in knowledge, many of which can be filled by employing PA-baiting. We review and analyse the history of records on the attraction of adult insects to PAs and unveil the complex background information on PA-chemistry, PA-producing plants ("PA-plants"), and PA-sequestering insects ("PA-insects") in order to come up with practical tips for successful baiting with PAs ("PA-baiting"). Studying PA-pharmacophagy integrates taxonomy, behaviour, and ecology with evolutionary biology, chemistry, and toxicology. With basic knowledge of PA-chemistry and bearing the general peculiarities of PA-plants and PA-insects in mind, PA-baiting can be conducted easily and successfully to address many questions on the multifaceted ecology of pyrrolizidine alkaloids. We aim to encourage field researchers in the tropics to employ PA-baiting as a valuable research method in this field of integrative biology.


Assuntos
Alcaloides , Borboletas , Alcaloides de Pirrolizidina , Humanos , Animais , Insetos , Plantas
2.
J Insect Sci ; 20(5)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32915969

RESUMO

Drones have become valuable tools for biodiversity studies by providing aerial photographs; however, for most entomological studies, images, in particular those taken remotely, are usually insufficient; rather sampling of specimens is required. We equipped a cheap off-the-shelf drone with a net bag, flew it over the ground, sweeping the vegetation, and sampled adult and larval insects as well as spiders. 'Drone-netting' proved to be a versatile method for general insect sampling, particularly in inaccessible terrains. It is time- and cost-effective, minimally invasive, and adaptable for many research tasks in entomofaunistics; it shows a degree of representativeness similar to hand-netting, and caught specimens stay alive and can be released if not needed.


Assuntos
Entomologia/métodos , Controle de Insetos/métodos , Insetos , Animais , Entomologia/instrumentação , Controle de Insetos/instrumentação
3.
J Insect Sci ; 19(5)2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31665785

RESUMO

Scales, exoskeletal features characteristic of the Lepidoptera, occur in enormous structural and functional diversity. They cover the wing membranes and other body parts and give butterflies and moths their often stunning appearance. Generally, the patterns made by scales are visual signals for intra- and interspecific communication. In males, scales and/or bristles also make up the androconial organs, which emit volatile signals during courtship. Here, a structurally and putative functionally novel type of scales and bristles is reported: 'crystal macrosetae'. These lack trabeculae and windows, are made up by a very thin and flexible envelope only and contain crystallizing material. In 'crystal scales', there is a flat surface ornamentation of modified ridges, while 'crystal bristles' often show large protrusions. Crystal macrosetae usually cannot be reliably recognized without destruction. Apparently, they serve as containers for large amounts of material that is viscous in living moths, highly hygroscopic, crystallizes when specimens dry up, and can be visualized by scanning electron microscopy. Crystal macrosetae occur in males only, always associated with or making up androconial organs located on various parts of the body, and have numerous forms with diverse surface ornamentation across many species and genera. The newly identified structures and the discovery of crystallizing material in scales and bristles raise many questions and could shed new light on ontogenetic development of macrosetae, and on the biology and physiology as well as the evolution and systematics of Arctiinae. There is evidence that crystal macrosetae occur in other moths too.


Assuntos
Escamas de Animais/ultraestrutura , Mariposas/ultraestrutura , Asas de Animais/ultraestrutura , Animais , Masculino , Microscopia Eletrônica de Varredura
4.
Ann Entomol Soc Am ; 111(6): 341-354, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30397363

RESUMO

Pupae of numerous Papilionidae and Nymphalidae produce twitter sounds when wriggling in response to mechanical stimulation. The structural basis comprises distinct pairs of sound-producing organs (SPOs) located at intersegmental membranes of the abdomen. They differ-as the twitters do-in sampled taxa of Papilioninae, Epicaliini, and Heliconiini. The opposing sculptured cuticular sound plates (SPs) of each SPO appear structurally the same but are actually mirror-images of each other. Results suggest that sounds are not generated by stridulation (friction of a file and a scraper) but when these inversely sculptured and interlocking surfaces separate during pupal wriggling, representing a stick-slip mechanism. Twitter sounds comprise series of short broadband pulses with the main energy in the frequency range 3-13 kHz; they can be heard by humans but extend into ultrasonic frequencies up to 100 kHz.

5.
Zootaxa ; 4497(2): 226-240, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30313675

RESUMO

Gloora gen. nov. is established for Eucereon alba (Druce, 1894), Hyaleucerea mundula (Berg, 1882), Agaraea sericeum (Zerny, 1931), and Gloora canae sp. nov. These species are (re­)described considering male genitalia in particular and, in case, barcodes. Further species which might fit into Gloora gen. nov. are discussed.


Assuntos
Mariposas , Animais , Masculino
6.
Ecol Evol ; 7(1): 73-81, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28070276

RESUMO

Mimicry is one of the oldest concepts in biology, but it still presents many puzzles and continues to be widely debated. Simulation of wasps with a yellow-black abdominal pattern by other insects (commonly called "wasp mimicry") is traditionally considered a case of resemblance of unprofitable by profitable prey causing educated predators to avoid models and mimics to the advantage of both (Figure 1a). However, as wasps themselves are predators of insects, wasp mimicry can also be seen as a case of resemblance to one's own potential antagonist. We here propose an additional hypothesis to Batesian and Müllerian mimicry (both typically involving selection by learning vertebrate predators; cf. Table 1) that reflects another possible scenario for the evolution of multifold and in particular very accurate resemblances to wasps: an innate, visual inhibition of aggression among look-alike wasps, based on their social organization and high abundance. We argue that wasp species resembling each other need not only be Müllerian mutualists and that other insects resembling wasps need not only be Batesian mimics, but an innate ability of wasps to recognize each other during hunting is the driver in the evolution of a distinct kind of masquerade, in which model, mimic, and selecting agent belong to one or several species (Figure  1b). Wasp mimics resemble wasps not (only) to be mistaken by educated predators but rather, or in addition, to escape attack from their wasp models. Within a given ecosystem, there will be selection pressures leading to masquerade driven by wasps and/or to mimicry driven by other predators that have to learn to avoid them. Different pressures by guilds of these two types of selective agents could explain the widely differing fidelity with respect to the models in assemblages of yellow jackets and yellow jacket look-alikes.

7.
Phytochem Anal ; 27(5): 257-76, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27432636

RESUMO

INTRODUCTION: Within the Apocynoideae (Apocynaceae) pro-toxic dehydropyrrolizidine alkaloids have been reported only in Echiteae. However, attraction of pyrrolizidine alkaloid-pharmacophagous insects suggested their presence in Alafia cf. caudata Stapf (Nerieae: Alafiinae) and Amphineurion marginatum (Roxb.) D.J. Middleton (Apocyneae: Amphineuriinae), both used as medicinal plants. OBJECTIVE: To confirm the presence of dehydropyrrolizidine alkaloids in Alafia cf. caudata and Amphineurion marginatum and identify their structures. METHODS: Methanol extracts of air-dried roots, stems and leaves of non-flowering plants were analysed using HPLC-ESI(+)MS and MS/MS or collision-induced dissociation MS in low and/or high resolution modes. Pyrrolizidine alkaloids were tentatively identified based on the mass spectrometry data. Solid phase extraction combined with semi-preparative HPLC were used to isolate major alkaloids. Structures were elucidated using NMR spectroscopy. RESULTS: Monoesters of retronecine with senecioic, hydroxysenecioic or syringic acids were identified in roots of Alafia cf. caudata. Two unprecedented 10-membered macrocyclic dehydropyrrolizidine alkaloid diesters were isolated from roots of Amphineurion marginatum. Pyrrolizidine alkaloids were detected in root and leaf material of Alafia cf. caudata at 0.34 and 0.01% dry weight (DW), and 0.13, 0.02 and 0.09% DW in root, leaf and stem material of Amphineurion marginatum. CONCLUSIONS: The presence of pro-toxic dehydropyrrolizidine alkaloids suggests that medical preparations of these plants pose potential health risks to consumers. Dehydropyrrolizidine alkaloids are evidently more widespread in Apocynoideae than previously assumed, and it would seem rewarding to study other members of this family for the presence of pyrrolizidines, dehydropyrrolizidines and dihydropyrrolizines. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Alcaloides/isolamento & purificação , Apocynaceae/química , Plantas Medicinais , Pirróis/isolamento & purificação , Alcaloides/química , Resinas de Troca de Cátion , Cromatografia Líquida de Alta Pressão , Ésteres , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Pirróis/química , Extração em Fase Sólida
8.
J Ethnopharmacol ; 172: 179-94, 2015 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-26087231

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Asmachilca is a Peruvian medicinal herb preparation ostensibly derived from Aristeguietia gayana (Wedd.) R.M. King & H. Rob. (Asteraceae: Eupatorieae). Decoctions of the plant have a reported bronchodilation effect that is purported to be useful in the treatment of respiratory allergies, common cold and bronchial asthma. However, its attractiveness to pyrrolizidine alkaloid-pharmacophagous insects indicated a potential for toxicity for human consumers. AIM OF THE STUDY: To determine if commercial asmachilca samples, including fully processed herbal teas, contain potentially toxic 1,2-dehydropyrrolizidine alkaloids. MATERIALS AND METHODS: Two brands of "Asmachilca" herbal tea bags and four other commercial samples of botanical materials for preparing asmachilca medicine were extracted and analyzed using HPLC-esi(+)MS and MS/MS for the characteristic retention times and mass spectra of known dehydropyrrolizidine alkaloids. Other suspected dehydropyrrolizidine alkaloids were tentatively identified based on MS/MS profiles and high resolution molecular weight determinations. Further structure elucidation of isolated alkaloids was based on 1D and 2D NMR spectroscopy. RESULTS: Asmachilca attracted many species of moths which are known to pharmacophagously gather dehydropyrrolizidine alkaloids. Analysis of 5 of the asmachilca samples revealed the major presence of the dehydropyrrolizidine alkaloid monoesters rinderine and supinine, and their N-oxides. The 6th sample was very similar but did not contain supinine or its N-oxide. Small quantities of other dehydropyrrolizidine alkaloid monoesters, including echinatine and intermedine, were also detected. In addition, two major metabolites, previously undescribed, were isolated and identified as dehydropyrrolizidine alkaloid monoesters with two "head-to-tail" linked viridifloric and/or trachelanthic acids. Estimates of total pyrrolizidine alkaloid and N-oxide content in the botanical components of asmachilca varied from 0.4% to 0.9% (w/dw, dry weight) based on equivalents of lycopsamine. The mean pyrrolizidine alkaloid content of a hot water infusion of a commercial asmachilca herbal tea bag was 2.2±0.5mg lycopsamine equivalents. Morphological and chemical evidence showed that asmachilca is prepared from different plant species. CONCLUSIONS: All asmachilca samples and the herbal tea infusions contained toxicologically-relevant concentrations of pro-toxic 1,2-dehydropyrrolizidine alkaloid esters and, therefore, present a risk to the health of humans. This raises questions concerning the ongoing unrestricted availability of such products on the Peruvian and international market. In addition to medical surveys of consumers of asmachilca, in the context of chronic disease potentially associated with ingestion of the dehydropyrrolizidine alkaloids, the botanical origins of asmachilca preparations require detailed elucidation.


Assuntos
Asteraceae/química , Plantas Medicinais/química , Plantas Medicinais/toxicidade , Alcaloides de Pirrolizidina/análise , Alcaloides de Pirrolizidina/toxicidade , Chá/química , Etnobotânica , Humanos , Alcaloides de Pirrolizidina/química , Alcaloides de Pirrolizidina/isolamento & purificação
9.
Phytochem Anal ; 26(3): 215-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25645745

RESUMO

INTRODUCTION: The freshwater aquatic plant Gymnocoronis spilanthoides (Senegal tea plant, jazmín del bañado, Falscher Wasserfreund) is an invasive plant in many countries. Behavioural observations of pyrrolizidine alkaloid-pharmacophagous butterflies suggested the presence of pyrrolizidine alkaloids in the plant. OBJECTIVE: To determine whether the attraction of the butterflies to the plant is an accurate indicator of pyrrolizidine alkaloids in G. spilanthoides. METHODS: The alkaloid fraction of a methanolic extract of G. spilanthoides was analysed using HPLC with electrospray ionisation MS and MS/MS. Two HPLC approaches were used, that is, a C18 reversed-phase column with an acidic mobile phase, and a porous graphitic carbon column with a basic mobile phase. RESULTS: Pyrrolizidine alkaloids were confirmed, with the free base forms more prevalent than the N-oxides. The major alkaloids detected were lycopsamine and intermedine. The porous graphitic carbon HPLC column, with basic mobile phase conditions, resulted in better resolution of more pyrrolizidine alkaloids including rinderine, the heliotridine-based epimer of intermedine. Based on the MS/MS and high-resolution MS data, gymnocoronine was tentatively identified as an unusual C9 retronecine ester with 2,3-dihydroxy-2-propenylbutanoic acid. Among several minor-abundance monoester pyrrolizidines recognised, spilanthine was tentatively identified as an ester of isoretronecanol with the unusual 2-acetoxymethylbutanoic acid. CONCLUSIONS: The butterflies proved to be reliable indicators for the presence of pro-toxic 1,2-dehydropyrrolizidine alkaloids in G. spilanthoides, the first aquatic plant shown to produce these alkaloids. The presence of the anti-herbivory alkaloids may contribute to the plant's invasive capabilities and would certainly be a consideration in any risk assessment of deliberate utilisation of the plant. The prolific growth of the plant and the structural diversity of its pyrrolizidine alkaloids may make it ideal for investigating biosynthetic pathways or for large-scale production of specific alkaloids.


Assuntos
Asteraceae/química , Alcaloides de Pirrolizidina/análise , Cromatografia Líquida de Alta Pressão/métodos , Ésteres/análise , Ésteres/química , Espécies Introduzidas , Estrutura Molecular , Alcaloides de Pirrolizidina/química , Espectrometria de Massas em Tandem/métodos
10.
Evolution ; 67(9): 2753-61, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24033181

RESUMO

Despite the monarch butterfly (Danaus plexippus) being famous for its adaptations to the defensive traits of its milkweed host plants, little is known about the macroevolution of these traits. Unlike most other animal species, monarchs are largely insensitive to cardenolides, because their target site, the sodium pump (Na(+)/K(+) -ATPase), has evolved amino acid substitutions that reduce cardenolide binding (so-called target site insensitivity, TSI). Because many, but not all, species of milkweed butterflies (Danaini) are associated with cardenolide-containing host plants, we analyzed 16 species, representing all phylogenetic lineages of milkweed butterflies, for the occurrence of TSI by sequence analyses of the Na(+)/K(+) -ATPase gene and by enzymatic assays with extracted Na(+)/K(+) -ATPase. Here we report that sensitivity to cardenolides was reduced in a stepwise manner during the macroevolution of milkweed butterflies. Strikingly, not all Danaini typically consuming cardenolides showed TSI, but rather TSI was more strongly associated with sequestration of toxic cardenolides. Thus, the interplay between bottom-up selection by plant compounds and top-down selection by natural enemies can explain the evolutionary sequence of adaptations to these toxins.


Assuntos
Borboletas/genética , Cardenolídeos/toxicidade , Evolução Molecular , Proteínas de Insetos/genética , ATPase Trocadora de Sódio-Potássio/genética , Substituição de Aminoácidos , Animais , Asclepias/química , Asclepias/parasitologia , Borboletas/efeitos dos fármacos , Filogenia
11.
Artigo em Inglês | MEDLINE | ID: mdl-21360373

RESUMO

Plant-produced 1,2-dehydropyrrolizidine ester alkaloids and their N-oxides (PAs) not only cause acute poisoning of humans and livestock, but also the likely harmful cryptic effects of chronic exposure pose particular food safety risks that need to be addressed for consumer protection. In natural contexts, however, PAs cause few or no problems. Rather, these plant secondary metabolites are important elements of ecosystems and plant-animal relationships; the existence and persistence of many PA-adapted organisms, in various ways, depends on the presence of PA-containing plants or even on PAs as such. PA plants are widely distributed among unrelated families of the plant kingdom; there is great structural diversity of PAs, and the amounts of PAs produced are subject to great variation due to multiple causes. These realities, coupled with many deficiencies in our scientific understanding, make the presence and roles of PAs in nature a subject with limited potential for valid generalisations and predictions, and complex and difficult to summarise. PAs, their producer plants and their users are integral parts of ecosystems worldwide, and we have to learn to live with these allelochemicals by accepting the presence of some harmful natural chemicals in the environment and by taking regulatory action to reduce health risks to humans. Regulations for consumer protection are long overdue. However, any such measures must be flexible enough to accommodate the findings of future research. Transdisciplinary efforts are required to fill gaps in the knowledge and to come up with additional means to monitor the presence of PAs in food and feed.


Assuntos
Ecossistema , Análise de Alimentos , Plantas/química , Plantas/metabolismo , Alcaloides de Pirrolizidina/análise , Alcaloides de Pirrolizidina/metabolismo , Ração Animal/análise , Animais , Contaminação de Alimentos/análise , Mel/análise , Humanos , Insetos/metabolismo , Insetos/fisiologia , Fenômenos Fisiológicos Vegetais , Intoxicação , Pólen/química , Alcaloides de Pirrolizidina/intoxicação
12.
Pest Manag Sci ; 65(7): 823-30, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19378265

RESUMO

BACKGROUND: Chemical nematicides such as methyl bromide have for decades played a significant role in the management of plant-parasitic nematodes. Their application is problematic because of negative environmental impacts, and therefore methyl bromide was phased out in Europe in 2005. A possible alternative to synthetically derived nematicides is seen in the use of plants and/or their secondary metabolites. These plants could either be used as nematicidal green manure or as a source for nematicidal extracts. This study aimed to evaluate the effects of 1,2-dehydropyrrolizidine alkaloids (PAs), a group of secondary plant metabolites found in hundreds of plant species throughout the world, on the performance of plant-parasitic and free-living nematodes. RESULTS: PAs induced nematicidal, ovicidal and repellent effects on different plant-parasitic and free-living nematodes. There was no conclusive ranking in toxicity for the different structural types of PAs tested. However, the effects were often more pronounced for the tertiary than for the oxidised form of PAs. Further, large differences were observed in the susceptibility of different nematode species to PAs. CONCLUSIONS: PAs do affect several performance parameters and developmental stages of nematodes. Therefore, PA-producing plants such as species of Crotalaria, Ageratum or Senecio might be promising candidates for nematode management strategies. [Correction made here after initial online publication].


Assuntos
Nematoides/efeitos dos fármacos , Controle Biológico de Vetores/métodos , Praguicidas/farmacologia , Doenças das Plantas/parasitologia , Plantas/parasitologia , Alcaloides de Pirrolizidina/farmacologia , Animais , Praguicidas/química , Praguicidas/metabolismo , Plantas/química , Plantas/metabolismo , Alcaloides de Pirrolizidina/química , Alcaloides de Pirrolizidina/metabolismo
13.
J Agric Food Chem ; 56(14): 5662-72, 2008 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-18553916

RESUMO

Using HPLC-ESI-MS, several saturated and 1,2-dehydropyrrolizidine alkaloids were detected, mainly as their N-oxides, in fresh pollen collected from flowers of the pyrrolizidine alkaloid-producing plants Echium vulgare, E. plantagineum, Senecio jacobaea, S. ovatus, and Eupatorium cannabinum, and/or pollen loads from bees (bee pollen) that foraged on those plants. A major alkaloidal metabolite in S. ovatus was tentatively identified, using its mass spectrometric data and biogenic considerations, as the previously unreported, saturated alkaloid, 2-hydroxysarracine. Heating had very little effect on the 1,2-dehydropyrrolizidine alkaloids and their N-oxides from a variety of sources. Considered in conjunction with international concerns about the adverse effects of these alkaloids, the results strongly indicate a need for monitoring pollen supplies intended for human consumption, at least until conditions for processing and/or selection are clearly defined such as to significantly reduce the hepatotoxic (and potentially carcinogenic and genotoxic) pyrrolizidine alkaloid content of bee pollen.


Assuntos
Abelhas , Doença Hepática Induzida por Substâncias e Drogas , Manipulação de Alimentos/métodos , Pólen/química , Alcaloides de Pirrolizidina/análise , Animais , Dessecação , Suplementos Nutricionais , Contaminação de Alimentos/análise , Alcaloides de Pirrolizidina/toxicidade
14.
J Chem Ecol ; 34(1): 82-93, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18080165

RESUMO

Gilbert (1976) suggested that male-contributed odors of mated females of Heliconius erato could enforce monogamy. We investigated the pheromone system of a relative, Heliconius melpomene, using chemical analysis, behavioral experiments, and feeding experiments with labeled biosynthetic pheromone precursors. The abdominal scent glands of males contained a complex odor bouquet, consisting of the volatile compound (E)-beta-ocimene together with some trace components and a less volatile matrix made up predominately of esters of common C16- and C18-fatty acids with the alcohols ethanol, 2-propanol, 1-butanol, isobutanol, 1-hexanol, and (Z)-3-hexenol. This bouquet is formed during the first days after eclosion, and transferred during copulation to the females. Virgin female scent glands do not contain these compounds. The transfer of ocimene and the esters was shown by analysis of butterflies of both sexes before and after copulation. Additional proof was obtained by males fed with labeled D-13C6- glucose. They produced 13C-labeled ocimene and transferred it to females during copulation. Behavioral tests with ocimene applied to unmated females showed its repellency to males. The esters did not show such activity, but they moderated the evaporation rate of ocimene. Our investigation showed that beta-ocimene is an antiaphrodisiac pheromone of H. melpomene.


Assuntos
Borboletas/efeitos dos fármacos , Feromônios/análise , Feromônios/farmacologia , Glândulas Odoríferas/metabolismo , Comportamento Sexual Animal/efeitos dos fármacos , Abdome , Monoterpenos Acíclicos , Alcenos/farmacologia , Animais , Borboletas/fisiologia , Ésteres/farmacologia , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Odorantes/análise
15.
J Chem Ecol ; 33(12): 2266-80, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18030534

RESUMO

Many pyrrolizidine alkaloid (PA)-adapted insects convert PAs sequestered from their larval host plants into "insect-PAs" in which the acid components of the alkaloids are replaced by small, branched aliphatic 2-hydroxy acids of insect origin. It has been proposed that insect-PAs are precursors of the pheromone hydroxydanaidal in male Estigmene acrea moths, but it is not clear why they are specifically required or what the structural features or chemical properties are that make insect-PAs more suitable for conversion into hydroxydanaidal than superficially similar alkaloids of plant origin. Evidence is presented that insect-PAs are also precursors of hydroxydanaidal in the polyphageous arctiine, Creatonotos transiens, and a new biosynthetic pathway to hydroxydanaidal is proposed that has a mandatory requirement for insect-PAs as intermediates.


Assuntos
Alcaloides/biossíntese , Lepidópteros/metabolismo , Feromônios/química , Alcaloides de Pirrolizidina/metabolismo , Animais , Cromatografia Líquida , Cromatografia em Camada Fina , Cromatografia Gasosa-Espectrometria de Massas
16.
J Agric Food Chem ; 53(3): 594-600, 2005 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-15686407

RESUMO

The pyrrolizidine alkaloids previously identified in floral honey attributed to Echium vulgare (Boraginaceae) have been detected (8000-14 000 ppm) in pure pollen collected from the anthers of Echium vulgare. Pyrrolizidine alkaloids and/or their N-oxides were isolated from the aqueous acid extracts of pollen by use of strong cation-exchange, solid-phase extraction and identified by liquid chromatographic/mass spectrometric (LCMS) analysis. The pyrrolizidine alkaloids in the pollen are present mainly as the N-oxides. In addition to seven previously described pyrrolizidine alkaloids and/or their N-oxides (echimidine, acetylechimidine, uplandicine, 9-O-angelylretronecine, echiuplatine, leptanthine, and echimiplatine), one unidentified (echivulgarine), but previously found in honey, and two previously undescribed (vulgarine and 7-O-acetylvulgarine) pyrrolizidine alkaloids and/or their N-oxides were identified in the pollen. Tentative structures for these unidentified pyrrolizidine alkaloids are proposed on the basis of the mass spectrometric data and biogenetic considerations. The implications of these results for identifying the source and subsequent concentrations of pyrrolizidine alkaloids in honeys and commercial bee pollen are briefly discussed.


Assuntos
Echium/química , Mel/análise , Pólen/química , Alcaloides de Pirrolizidina/análise , Cromatografia Líquida de Alta Pressão , Alcaloides de Pirrolizidina/química , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA