Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Vis Sci Technol ; 12(12): 11, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38079169

RESUMO

Purpose: Real-world evaluation of a deep learning model that prioritizes patients based on risk of progression to moderate or worse (MOD+) diabetic retinopathy (DR). Methods: This nonrandomized, single-arm, prospective, interventional study included patients attending DR screening at four centers across Thailand from September 2019 to January 2020, with mild or no DR. Fundus photographs were input into the model, and patients were scheduled for their subsequent screening from September 2020 to January 2021 in order of predicted risk. Evaluation focused on model sensitivity, defined as correctly ranking patients that developed MOD+ within the first 50% of subsequent screens. Results: We analyzed 1,757 patients, of which 52 (3.0%) developed MOD+. Using the model-proposed order, the model's sensitivity was 90.4%. Both the model-proposed order and mild/no DR plus HbA1c had significantly higher sensitivity than the random order (P < 0.001). Excluding one major (rural) site that had practical implementation challenges, the remaining sites included 567 patients and 15 (2.6%) developed MOD+. Here, the model-proposed order achieved 86.7% versus 73.3% for the ranking that used DR grade and hemoglobin A1c. Conclusions: The model can help prioritize follow-up visits for the largest subgroups of DR patients (those with no or mild DR). Further research is needed to evaluate the impact on clinical management and outcomes. Translational Relevance: Deep learning demonstrated potential for risk stratification in DR screening. However, real-world practicalities must be resolved to fully realize the benefit.


Assuntos
Aprendizado Profundo , Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/epidemiologia , Estudos Prospectivos , Hemoglobinas Glicadas , Medição de Risco
2.
Lancet Digit Health ; 3(1): e10-e19, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33735063

RESUMO

BACKGROUND: Diabetic retinopathy screening is instrumental to preventing blindness, but scaling up screening is challenging because of the increasing number of patients with all forms of diabetes. We aimed to create a deep-learning system to predict the risk of patients with diabetes developing diabetic retinopathy within 2 years. METHODS: We created and validated two versions of a deep-learning system to predict the development of diabetic retinopathy in patients with diabetes who had had teleretinal diabetic retinopathy screening in a primary care setting. The input for the two versions was either a set of three-field or one-field colour fundus photographs. Of the 575 431 eyes in the development set 28 899 had known outcomes, with the remaining 546 532 eyes used to augment the training process via multitask learning. Validation was done on one eye (selected at random) per patient from two datasets: an internal validation (from EyePACS, a teleretinal screening service in the USA) set of 3678 eyes with known outcomes and an external validation (from Thailand) set of 2345 eyes with known outcomes. FINDINGS: The three-field deep-learning system had an area under the receiver operating characteristic curve (AUC) of 0·79 (95% CI 0·77-0·81) in the internal validation set. Assessment of the external validation set-which contained only one-field colour fundus photographs-with the one-field deep-learning system gave an AUC of 0·70 (0·67-0·74). In the internal validation set, the AUC of available risk factors was 0·72 (0·68-0·76), which improved to 0·81 (0·77-0·84) after combining the deep-learning system with these risk factors (p<0·0001). In the external validation set, the corresponding AUC improved from 0·62 (0·58-0·66) to 0·71 (0·68-0·75; p<0·0001) following the addition of the deep-learning system to available risk factors. INTERPRETATION: The deep-learning systems predicted diabetic retinopathy development using colour fundus photographs, and the systems were independent of and more informative than available risk factors. Such a risk stratification tool might help to optimise screening intervals to reduce costs while improving vision-related outcomes. FUNDING: Google.


Assuntos
Aprendizado Profundo , Retinopatia Diabética/diagnóstico , Idoso , Área Sob a Curva , Técnicas de Diagnóstico Oftalmológico , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Fotografação , Prognóstico , Curva ROC , Reprodutibilidade dos Testes , Medição de Risco/métodos
3.
Ophthalmology ; 126(12): 1627-1639, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31561879

RESUMO

PURPOSE: To develop and validate a deep learning (DL) algorithm that predicts referable glaucomatous optic neuropathy (GON) and optic nerve head (ONH) features from color fundus images, to determine the relative importance of these features in referral decisions by glaucoma specialists (GSs) and the algorithm, and to compare the performance of the algorithm with eye care providers. DESIGN: Development and validation of an algorithm. PARTICIPANTS: Fundus images from screening programs, studies, and a glaucoma clinic. METHODS: A DL algorithm was trained using a retrospective dataset of 86 618 images, assessed for glaucomatous ONH features and referable GON (defined as ONH appearance worrisome enough to justify referral for comprehensive examination) by 43 graders. The algorithm was validated using 3 datasets: dataset A (1205 images, 1 image/patient; 18.1% referable), images adjudicated by panels of GSs; dataset B (9642 images, 1 image/patient; 9.2% referable), images from a diabetic teleretinal screening program; and dataset C (346 images, 1 image/patient; 81.7% referable), images from a glaucoma clinic. MAIN OUTCOME MEASURES: The algorithm was evaluated using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity for referable GON and glaucomatous ONH features. RESULTS: The algorithm's AUC for referable GON was 0.945 (95% confidence interval [CI], 0.929-0.960) in dataset A, 0.855 (95% CI, 0.841-0.870) in dataset B, and 0.881 (95% CI, 0.838-0.918) in dataset C. Algorithm AUCs ranged between 0.661 and 0.973 for glaucomatous ONH features. The algorithm showed significantly higher sensitivity than 7 of 10 graders not involved in determining the reference standard, including 2 of 3 GSs, and showed higher specificity than 3 graders (including 1 GS), while remaining comparable to others. For both GSs and the algorithm, the most crucial features related to referable GON were: presence of vertical cup-to-disc ratio of 0.7 or more, neuroretinal rim notching, retinal nerve fiber layer defect, and bared circumlinear vessels. CONCLUSIONS: A DL algorithm trained on fundus images alone can detect referable GON with higher sensitivity than and comparable specificity to eye care providers. The algorithm maintained good performance on an independent dataset with diagnoses based on a full glaucoma workup.


Assuntos
Aprendizado Profundo , Glaucoma de Ângulo Aberto/diagnóstico , Oftalmologistas , Disco Óptico/patologia , Doenças do Nervo Óptico/diagnóstico , Especialização , Idoso , Área Sob a Curva , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Nervosas/patologia , Curva ROC , Encaminhamento e Consulta , Células Ganglionares da Retina/patologia , Estudos Retrospectivos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...