Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731875

RESUMO

Mass spectrometry has become the most prominent yet evolving technology in quantitative proteomics. Today, a number of label-free and label-based approaches are available for the relative and absolute quantification of proteins and peptides. However, the label-based methods rely solely on the employment of stable isotopes, which are expensive and often limited in availability. Here we propose a label-based quantification strategy, where the mass difference is identified by the differential alkylation of cysteines using iodoacetamide and acrylamide. The alkylation reactions were performed under identical experimental conditions; therefore, the method can be easily integrated into standard proteomic workflows. Using high-resolution mass spectrometry, the feasibility of this approach was assessed with a set of tryptic peptides of human serum albumin. Several critical questions, such as the efficiency of labeling and the effect of the differential alkylation on the peptide retention and fragmentation, were addressed. The concentration of the quality control samples calculated against the calibration curves were within the ±20% acceptance range. It was also demonstrated that heavy labeled peptides exhibit a similar extraction recovery and matrix effect to light ones. Consequently, the approach presented here may be a viable and cost-effective alternative of stable isotope labeling strategies for the quantification of cysteine-containing proteins.


Assuntos
Acrilamida , Cisteína , Iodoacetamida , Proteômica , Iodoacetamida/química , Alquilação , Cisteína/química , Cisteína/análise , Acrilamida/química , Acrilamida/análise , Humanos , Proteômica/métodos , Espectrometria de Massas/métodos , Marcação por Isótopo/métodos , Peptídeos/química , Peptídeos/análise , Espectrometria de Massas em Tandem/métodos
2.
Front Pharmacol ; 14: 1215694, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492088

RESUMO

Antibody-Drug Conjugates (ADCs) and Small Molecule-Drug Conjugates (SMDCs) represent successful examples of targeted drug-delivery technologies for overcoming unwanted side effects of conventional chemotherapy in cancer treatment. In both strategies, a cytotoxic payload is connected to the tumor homing moiety through a linker that releases the drug inside or in proximity of the tumor cell, and that represents a key component for the final therapeutic effect of the conjugate. Here, we show that the replacement of the Val-Ala-p-aminobenzyloxycarbamate linker with the Gly-Pro-Leu-Gly-p-aminobenzyloxycarbamate (GPLG-PABC) sequence as enzymatically cleavable linker in the SMDC bearing the cyclo[DKP-isoDGR] αVß3 integrin ligand as tumor homing moiety and the monomethyl auristatin E (MMAE) as cytotoxic payload led to a 4-fold more potent anti-tumoral effect of the final conjugate on different cancer cell lines. In addition, the synthesized conjugate resulted to be significantly more potent than the free MMAE when tested following the "kiss-and-run" protocol, and the relative potency were clearly consistent with the expression of the αVß3 integrin receptor in the considered cancer cell lines. In vitro enzymatic cleavage tests showed that the GPLG-PABC linker is cleaved by lysosomal enzymes, and that the released drug is observable already after 15 min of incubation. Although additional data are needed to fully characterize the releasing capacity of GPLG-PABC linker, our findings are of therapeutic significance since we are introducing an alternative to other well-established enzymatically sensitive peptide sequences that might be used in the future for generating more efficient and less toxic drug delivery systems.

3.
Bioengineering (Basel) ; 10(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36978780

RESUMO

Antibodies are key proteins of the immune system, and they are widely used for both research and theragnostic applications. Among them, camelid immunoglobulins (IgG) differ from the canonical human IgG molecules, as their light chains are completely missing; thus, they have only variable domains on their heavy chains (VHHs). A single VHH domain, often called a nanobody, has favorable structural, biophysical, and functional features compared to canonical antibodies. Therefore, robust and efficient production protocols relying on recombinant technologies are in high demand. Here, by utilizing ecotin, an Escherichia coli protein, as a fusion partner, we present a bacterial expression system that allows an easy, fast, and cost-effective way to prepare nanobodies. Ecotin was used here as a periplasmic translocator and a passive refolding chaperone, which allowed us to reach high-yield production of nanobodies. We also present a new, easily applicable prokaryotic expression and purification method of the receptor-binding domain (RBD) of the SARS-CoV-2 S protein for interaction assays. We demonstrate using ECD spectroscopy that the bacterially produced RBD is well-folded. The bacterially produced nanobody was shown to bind strongly to the recombinant RBD, with a Kd of 10 nM. The simple methods presented here could facilitate rapid interaction measurements in the event of the appearance of additional SARS-CoV-2 variants.

4.
Drug Deliv ; 30(1): 2174210, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36752075

RESUMO

Chemotherapy is still a leading therapeutic approach in various tumor types that is often accompanied by a poor prognosis because of metastases. PEGylated liposomes with CREKA targeting moiety are well-known therapeutic agents, especially in highly metastatic experimental models. CREKA specifically targets tumor-associated ECM, which is present at the primary, as well as metastatic tumor sites. To better understand the function of the targeting moieties, we decided to design various liposome formulations with different amounts of targeting moiety attached to their DSPE-PEG molecules. Moreover, a new tumor-homing pentapeptide (SREKA) was designed, and a novel conjugation strategy between SREKA and DSPE-PEGs. First, the in vitro proliferation inhibition of drug-loaded liposomes and the cellular uptake of their cargo were investigated. Afterward, liposome stability in murine blood and drug accumulation in different tissues were measured. Furthermore, in vivo tumor growth, and metastasis inhibition potencies of the different liposome formulations were examined. According to our comparative studies, SREKA-liposomes have a uniform phenotype after formulation and have similar characteristics and tumor-homing capabilities to CREKA-liposomes. However, the exchange of the N-terminal cysteine to serine during conjugation results in a higher production yield and better stability upon conjugation to DSPE-PEGs. We also showed that SREKA-liposomes have significant inhibition on primary tumor growth and metastasis incidence; furthermore, increase the survival rate of tumor-bearing mice. Besides, we provide evidence that the amount of targeting moiety attached to DSPE-PEGs is largely responsible for the stability of liposomes, therefore it plays an important role in toxicity and targeting.


Assuntos
Lipossomos , Neoplasias , Camundongos , Animais , Lipossomos/química , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral , Polietilenoglicóis/química , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico
5.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834815

RESUMO

Targeted tumour therapy has proved to be an efficient alternative to overcome the limitations of conventional chemotherapy. Among several receptors upregulated in cancer cells, the gastrin-releasing peptide receptor (GRP-R) has recently emerged as a promising target for cancer imaging, diagnosing and treatment due to its overexpression on cancerous tissues such as breast, prostate, pancreatic and small-cell lung cancer. Herein, we report on the in vitro and in vivo selective delivery of the cytotoxic drug daunorubicin to prostate and breast cancer, by targeting GRP-R. Exploiting many bombesin analogues as homing peptides, including a newly developed peptide, we produced eleven daunorubicin-containing peptide-drug conjugates (PDCs), acting as drug delivery systems to safely reach the tumour environment. Two of our bioconjugates revealed remarkable anti-proliferative activity, an efficient uptake by all three tested human breast and prostate cancer cell lines, high stability in plasma and a prompt release of the drug-containing metabolite by lysosomal enzymes. Moreover, they revealed a safe profile and a consistent reduction of the tumour volume in vivo. In conclusion, we highlight the importance of GRP-R binding PDCs in targeted cancer therapy, with the possibility of further tailoring and optimisation.


Assuntos
Bombesina , Neoplasias da Próstata , Masculino , Humanos , Receptores da Bombesina/metabolismo , Preparações Farmacêuticas , Peptídeos , Neoplasias da Próstata/metabolismo , Daunorrubicina
6.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35455465

RESUMO

Imipridones, including ONC201, ONC206 and ONC212 (which are emblematic members of this class of compounds developed by Oncoceutics) constitute a novel class of anticancer agents, with promising results in clinical trials. With the aim of increasing the ROS (reactive oxygen species) responsivity of the synthesized molecules, a set of novel ferrocene-imipridone hybrids were designed and synthesized. Our strategy was motivated by the documented interplay between the imipridone-triggered activation of TRAIL (the tumor necrosis factor-related apoptosis-inducing ligand) and mitochondrial ClpP (Caseinolytic protease P) and the ROS-mediated effect of ferrocene-containing compounds. In order to obtain novel hybrids with multitarget characters, the ferrocene moiety was tethered to the imipridone scaffold through ethynylene and 1,2,3-triazolyl linkers by using Sonogashira coupling of Cu(I)- and Ru(II)-catalyzed azide-alkyne cycloadditions. The biological activities of the new hybrids were examined by using in vitro cell viability assays on four malignant cell lines (PANC-1, A2058, EBC-1 and Fadu), along with colony formation assays on the most resistant PANC-1 cell line. Several hybrids caused a significantly greater drop in the cell viability compared to ONC201, and two of them completely overcame the resistance, with IC50 values comparable to those produced by ONC201. The two most potent hybrids, but not ONC201, induced apoptosis/necrosis in PANC-1 and A2058 cells after 24 h of treatment.

7.
Molecules ; 26(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34641547

RESUMO

A high-resolution HILIC-MS/MS method was developed to analyze anthranilic acid derivatives of N-glycans released from human serum alpha-1-acid glycoprotein (AGP). The method was applied to samples obtained from 18 patients suffering from high-risk malignant melanoma as well as 19 healthy individuals. It enabled the identification of 102 glycan isomers separating isomers that differ only in sialic acid linkage (α-2,3, α-2,6) or in fucose positions (core, antenna). Comparative assessment of the samples revealed that upregulation of certain fucosylated glycans and downregulation of their nonfucosylated counterparts occurred in cancer patients. An increased ratio of isomers with more α-2,6-linked sialic acids was also observed. Linear discriminant analysis (LDA) combining 10 variables with the highest discriminatory power was employed to categorize the samples based on their glycosylation pattern. The performance of the method was tested by cross-validation, resulting in an overall classification success rate of 96.7%. The approach presented here is significantly superior to serological marker S100B protein in terms of sensitivity and negative predictive power in the population studied. Therefore, it may effectively support the diagnosis of malignant melanoma as a biomarker.


Assuntos
Melanoma/sangue , Orosomucoide/metabolismo , Biomarcadores Tumorais/sangue , Cromatografia/métodos , Glicosilação , Humanos , Polissacarídeos/sangue , Espectrometria de Massas em Tandem/métodos , ortoaminobenzoatos/química
8.
Int J Mol Sci ; 22(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562082

RESUMO

The use of peptide-drug conjugates has generated wide interest as targeted antitumor therapeutics. The anthracycline antibiotic, daunomycin, is a widely used anticancer agent and it is often conjugated to different tumor homing peptides. However, comprehensive analytical characterization of these conjugates via tandem mass spectrometry (MS/MS) is challenging due to the lability of the O-glycosidic bond and the appearance of MS/MS fragment ions with little structural information. Therefore, we aimed to investigate the optimal fragmentation conditions that suppress the prevalent dissociation of the anthracycline drug and provide good sequence coverage. In this study, we comprehensively compared the performance of common fragmentation techniques, such as higher energy collisional dissociation (HCD), electron transfer dissociation (ETD), electron-transfer higher energy collisional dissociation (EThcD) and matrix-assisted laser desorption/ionization-tandem time-of-flight (MALDI-TOF/TOF) activation methods for the structural identification of synthetic daunomycin-peptide conjugates by high-resolution tandem mass spectrometry. Our results showed that peptide backbone fragmentation was inhibited by applying electron-based dissociation methods to conjugates, most possibly due to the "electron predator" effect of the daunomycin. We found that efficient HCD fragmentation was largely influenced by several factors, such as amino acid sequences, charge states and HCD energy. High energy HCD and MALDI-TOF/TOF combined with collision induced dissociation (CID) mode are the methods of choice to unambiguously assign the sequence, localize different conjugation sites and differentiate conjugate isomers.


Assuntos
Daunorrubicina/análogos & derivados , Daunorrubicina/metabolismo , Peptídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Daunorrubicina/química , Transporte de Elétrons , Peptídeos/química , Conformação Proteica
9.
Chemistry ; 27(3): 1015-1022, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-32955139

RESUMO

Most anticancer agents are hydrophobic and can easily penetrate the tumor cell membrane by passive diffusion. This may impede the development of highly effective and tumor-selective treatment options. A hydrophilic ß-glucuronidase-cleavable linker was used to connect the highly potent antimitotic agent cryptophycin-55 glycinate with the αv ß3 integrin ligand c(RGDfK). Incorporation of the self-immolative linker containing glucuronic acid results in lower cytotoxicity than that of the free payload, suggesting that hydrophilic sugar linkers can preclude passive cellular uptake. In vitro drug-release studies and cytotoxicity assays demonstrated the potential of this small molecule-drug conjugate, providing guidance for the development of therapeutics containing hydrophobic anticancer drugs.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Oligopeptídeos/química , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Humanos
10.
J Am Soc Mass Spectrom ; 31(8): 1744-1750, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32559094

RESUMO

Posttranslational modifications of proteins like citrullination and carbamylation are associated with several diseases. Detailed analytical characterization of citrullinated and carbamylated proteins or peptides could be difficult due to the low concentration of the analytes in complex biological samples. High structural similarity and chemical behavior of citrullinated and carbamylated residues also pose a challenge. We previously reported the "citrulline effect" phenomenon that is manifested in the generation of intense y type ions originating from Cit-Zzz amide bond scissions in collision-induced dissociation tandem mass spectra of citrullinated tryptic peptides. In this study, we created a rigorous tryptic-like model system of both citrulline and homocitrulline-containing peptides that included appropriate and well-defined controls and fragment analogues to quantify the citrulline effect and investigate whether there is an effect for homocitrulline residues as well. Our results show that citrulline residues significantly increased fragmentation at their C-terminus relatively independent of the identity of the following amino acid. In comparison, homocitrulline residues displayed inconclusive results at the same energies. However, the strength of effects was dependent on collision energy and the position of citrulline and homocitrulline in the sequences. As newer software algorithms tend to observe structure-intensity relationships during annotation, this finding increases reliable identification of modified proteins/peptides.


Assuntos
Citrulina/análogos & derivados , Citrulina/análise , Peptídeos/química , Cromatografia Líquida de Alta Pressão , Carbamilação de Proteínas , Espectrometria de Massas em Tandem/métodos
11.
Chemistry ; 26(12): 2602-2605, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31943410

RESUMO

The effective delivery of cytotoxic agents to tumor cells is a key challenge in anticancer therapy. Multivalent integrinspecific ligands are considered a promising tool to increase the binding affinity, selectivity, and internalization efficiency of small-molecule drug conjugates. Herein, we report the synthesis and biological evaluation of a multimeric conjugate containing the high-affinity integrin αv ß3 binding ligand RAFT-c(RGDfK)4 , a lysosomally cleavable Val-Cit linker, and cryptophycin-55 glycinate, a potent inhibitor of tubulin polymerization. In vitro cytotoxicity assays verified that the multimeric RGD-cryptophycin conjugate displays improved potency compared to the monomeric analogue in integrin αv ß3 overexpressing tumor cell lines, while significantly reduced activity was observed in the integrin-negative cell line.


Assuntos
Depsipeptídeos/química , Portadores de Fármacos/química , Peptídeos Cíclicos/química , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Humanos , Integrina alfaVbeta3/química , Terapia de Alvo Molecular/métodos
12.
ChemistryOpen ; 8(6): 737-742, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31275795

RESUMO

RGD-cryptophycin and isoDGR-cryptophycin conjugates were synthetized by combining peptidomimetic integrin ligands and cryptophycin, a highly potent tubulin-binding antimitotic agent across lysosomally cleavable Val-Ala or uncleavable linkers. The conjugates were able to effectively inhibit binding of biotinylated vitronectin to integrin αvß3, showing a binding affinity in the same range as that of the free ligands. The antiproliferative activity of the novel conjugates was evaluated on human melanoma cells M21 and M21-L with different expression levels of integrin αvß3, showing nanomolar potency of all four compounds against both cell lines. Conjugates containing uncleavable linker show reduced activity compared to the corresponding cleavable conjugates, indicating efficient intracellular drug release in the case of cryptophycin-based SMDCs. However, no significant correlation between the in vitro biological activity of the conjugates and the integrin αvß3 expression level was observed, which is presumably due to a non-integrin-mediated uptake. This reveals the complexity of effective and selective αvß3 integrin-mediated drug delivery.

13.
Pharmaceutics ; 11(5)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067748

RESUMO

Tumor targeting has emerged as an advantageous approach to improving the efficacy and safety of cytotoxic agents or radiolabeled ligands that do not preferentially accumulate in the tumor tissue. The somatostatin receptors (SSTRs) belong to the G-protein-coupled receptor superfamily and they are overexpressed in many neuroendocrine tumors (NETs). SSTRs can be efficiently targeted with octreotide, a cyclic octapeptide that is derived from native somatostatin. The conjugation of cargoes to octreotide represents an attractive approach for effective tumor targeting. In this study, we conjugated octreotide to cryptophycin, which is a highly cytotoxic depsipeptide, through the protease cleavable Val-Cit dipeptide linker using two different self-immolative moieties. The biological activity was investigated in vitro and the self-immolative part largely influenced the stability of the conjugates. Replacement of cryptophycin by the infrared cyanine dye Cy5.5 was exploited to elucidate the tumor targeting properties of the conjugates in vitro and in vivo. The compound efficiently and selectively internalized in cells overexpressing SSTR2 and accumulated in xenografts for a prolonged time. Our results on the in vivo properties indicate that octreotide may serve as an efficient delivery vehicle for tumor targeting.

14.
Pharmaceutics ; 11(4)2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939768

RESUMO

Cryptophycins are potent tubulin polymerization inhibitors with picomolar antiproliferative potency in vitro and activity against multidrug-resistant (MDR) cancer cells. Because of neurotoxic side effects and limited efficacy in vivo, cryptophycin-52 failed as a clinical candidate in cancer treatment. However, this class of compounds has emerged as attractive payloads for tumor-targeting applications. In this study, cryptophycin was conjugated to the cyclopeptide c(RGDfK), targeting integrin αvß3, across the protease-cleavable Val-Cit linker and two different self-immolative spacers. Plasma metabolic stability studies in vitro showed that our selected payload displays an improved stability compared to the parent compound, while the stability of the conjugates is strongly influenced by the self-immolative moiety. Cathepsin B cleavage assays revealed that modifications in the linker lead to different drug release profiles. Antiproliferative effects of Arg-Gly-Asp (RGD)⁻cryptophycin conjugates were evaluated on M21 and M21-L human melanoma cell lines. The low nanomolar in vitro activity of the novel conjugates was associated with inferior selectivity for cell lines with different integrin αvß3 expression levels. To elucidate the drug delivery process, cryptophycin was replaced by an infrared dye and the obtained conjugates were studied by confocal microscopy.

15.
Peptides ; 112: 106-113, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30513351

RESUMO

The endogenous ligand nociceptin (N/OFQ) and a positively charged synthetic peptide RYYRIK are both selective for the nociceptin opioid receptor (NOPr). Despite their structural dissimilarity, N/OFQ and RYYRIK compete for the same binding site of NOP receptor possessing full and partial agonistic character, respectively. In the view of the message-address concept, hybrid peptide constructs were probed for the NOP receptor combining different regions of N/OFQ and RYYRIK related peptide sequences. Nine novel nociceptin- or Ac-RYYRIK-NH2 peptide variants or hybrid peptides were synthesized and characterized. Peptides P2 and P8 contain fragments of native N/OFQ. The other seven analogues (P1, P3-7, P9) are composed of Ac-RYYRIK-NH2 fragments and parts of the original nociceptin sequence. The analogues were characterized in receptor binding assays and G-protein activation experiments on rat brain membranes, as well as by electrically stimulated mouse vas deferens bioassay. In receptor binding assays ligands P2, P4, P6 (Ki 0.37 nM) and P7 showed higher affinity (Ki 0.65 nM, 0.6 nM, 0.37 nM and 0.44 nM, respectively) for NOP receptor than their parent compounds N/OFQ (Ki 2.8 nM) or Ac-RYYRIK-NH2 (Ki 4.2 nM). In [35S]GTPγS binding experiments P2 and P3 behaved as full agonists. The other variants exhibited partial agonist properties characterized by submaximal stimulatory effects. In mouse vas deferens bioassay only P2 showed agonist activity. P4, P5, P6 inhibited the biological activity of N/OFQ more effectively than the NOP receptor selective antagonist JTC-801. In summary, hybrid peptides P4, P5 and P6 proved to be NOP receptor partial agonists even antagonists, while P2 peptide retained the full agonist property.


Assuntos
Peptídeos Opioides/farmacologia , Receptores Opioides/agonistas , Animais , Cobaias , Ligantes , Masculino , Ratos , Receptores Opioides/efeitos dos fármacos , Receptor de Nociceptina , Nociceptina
16.
ACS Omega ; 3(11): 14726-14731, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30533574

RESUMO

Traditional chemotherapeutics used in cancer therapy do not preferentially accumulate in tumor tissues. The conjugation to delivery vehicles like antibodies or small molecules has been proposed as a strategy to increase the tumor uptake and improve the therapeutic window of these drugs. Here, we report the synthesis and the biological evaluation of a novel small molecule-drug conjugate (SMDC) comprising a high-affinity bidentate acetazolamide derivative, targeting carbonic anhydrase IX (CAIX), and cryptophycin, a potent microtubule destabilizer. The biological activity of the novel SMDC was evaluated in vitro, measuring binding to the CAIX antigen by surface plasmon resonance and cytotoxicity against SKRC-52 cells. In vivo studies showed a delayed growth of tumors in nude mice bearing SKRC-52 renal cell carcinomas.

17.
Beilstein J Org Chem ; 14: 1281-1286, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977395

RESUMO

Cryptophycins are naturally occurring cytotoxins with great potential for chemotherapy. Since targeted therapy provides new perspectives for treatment of cancer, new potent analogues of cytotoxic agents containing functional groups for conjugation to homing devices are required. We describe the design, synthesis and biological evaluation of three new unit B cryptophycin analogues. The O-methyl group of the unit B D-tyrosine analogue was replaced by an O-(allyloxyethyl) moiety, an O-(hydroxyethyl) group, or an O-(((azidoethoxy)ethoxy)ethoyxethyl) substituent. While the former two maintain cytotoxicity in the subnanomolar range, the attachment of the triethylene glycol spacer with a terminal azide results in a complete loss of activity. Docking studies of the novel cryptophycin analogues to ß-tubulin provided a rationale for the observed cytotoxicities.

19.
Peptides ; 99: 205-216, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29038035

RESUMO

In an attempt to design opioid-nociceptin hybrid peptides, three novel bivalent ligands, H-YGGFGGGRYYRIK-NH2, H-YGGFRYYRIK-NH2 and Ac-RYYRIKGGGYGGFL-OH were synthesized and studied by biochemical, pharmacological, biophysical and molecular modelling tools. These chimeric molecules consist of YGGF sequence, a crucial motif in the N-terminus of natural opioid peptides, and Ac-RYYRIK-NH2, which was isolated from a combinatorial peptide library as an antagonist or partial agonist that inhibits the biological activity of the endogenously occurring heptadecapeptide nociceptin. Solution structures for the peptides were studied by analysing their circular dichroism spectra. Receptor binding affinities were measured by equilibrium competition experiments using four highly selective radioligands. G-protein activating properties of the multitarget peptides were estimated in [35S]GTPγS binding tests. The three compounds were also measured in electrically stimulated mouse vas deferens (MVD) bioassay. H-YGGFGGGRYYRIK-NH2 (BA55), carrying N-terminal opioid and C-terminal nociceptin-like sequences interconnected with GGG tripeptide spacer displayed a tendency of having either unordered or ß-sheet structures, was moderately potent in MVD and possessed a NOP/KOP receptor preference. A similar peptide without spacer H-YGGFRYYRIK-NH2 (BA62) exhibited the weakest effect in MVD, more α-helical periodicity was present in its structure and it exhibited the most efficacious agonist actions in the G-protein stimulation assays. The third hybrid peptide Ac-RYYRIKGGGYGGFL-OH (BA61) unexpectedly displayed opioid receptor affinities, because the opioid message motif is hidden within the C-terminus. The designed chimeric peptide ligands presented in this study accommodate well into a group of multitarget opioid compounds that include opioid-non-opioid peptide dimer analogues, dual non-peptide dimers and mixed peptide- non-peptide bifunctional ligands.


Assuntos
Modelos Moleculares , Peptídeos Opioides , Engenharia de Proteínas/métodos , Receptores Acoplados a Proteínas G/agonistas , Animais , Feminino , Masculino , Camundongos , Peptídeos Opioides/química , Peptídeos Opioides/genética , Peptídeos Opioides/farmacologia , Estrutura Secundária de Proteína , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Nociceptina
20.
J Pept Sci ; 23(7-8): 514-531, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28661555

RESUMO

Cryptophycins are a class of 16-membered highly cytotoxic macrocyclic depsipeptides isolated from cyanobacteria. The biological activity is based on their ability to interact with tubulin. They interfere with microtubule dynamics and prevent microtubules from forming correct mitotic spindles, which causes cell-cycle arrest and apoptosis. Their strong antiproliferative activities with 100-fold to 1000-fold potency compared with those of paclitaxel and vinblastine have been observed. Cryptophycins are highly promising drug candidates, as their biological activity is not negatively affected by P-glycoprotein, a drug efflux system commonly found in multidrug-resistant cancer cell lines and solid tumors. Cryptophycin-52 had been investigated in phase II clinical trials but failed because of its high neurotoxicity. Recently, cryptophycin conjugates with peptides and antibodies have been developed for targeted delivery in tumor therapy. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Depsipeptídeos/química , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Depsipeptídeos/uso terapêutico , Humanos , Microtúbulos/efeitos dos fármacos , Peptídeos/química , Fuso Acromático/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...