Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(20): e202401056, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472115

RESUMO

Single-atom heterogeneous catalysts (SACs) hold promise as sustainable alternatives to metal complexes in organic transformations. However, their working structure and dynamics remain poorly understood, hindering advances in their design. Exploiting the unique features of droplet-based microfluidics, we present the first in-situ assessment of a palladium SAC based on exfoliated carbon nitride in Suzuki-Miyaura cross-coupling using X-ray absorption spectroscopy. Our results confirm a surface-catalyzed mechanism, revealing the distinct electronic structure of active Pd centers compared to homogeneous systems, and providing insights into the stabilizing role of ligands and bases. This study establishes a valuable framework for advancing mechanistic understanding of organic syntheses catalyzed by SACs.

2.
Environ Sci Technol ; 57(42): 16097-16108, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37822288

RESUMO

The transformation of 2-line ferrihydrite to goethite from supersaturated solutions at alkaline pH ≥ 13.0 was studied using a combination of benchtop and advanced synchrotron techniques such as X-ray diffraction, thermogravimetric analysis, and X-ray absorption spectroscopy. In comparison to the transformation rates at acidic to mildly alkaline environments, the half-life, t1/2, of 2-line ferrihydrite reduces from several months at pH = 2.0, and approximately 15 days at pH = 10.0, to just under 5 h at pH = 14.0. The calculated-first order rate constants of transformation, k, increase exponentially with respect to the pH and follow the progression log10 k = log10 k0 + a·pH3. Simultaneous monitoring of the aqueous Fe(III) concentration via inductively coupled plasma optical emission spectroscopy demonstrates that (i) goethite likely precipitates from solution and (ii) its formation is rate-limited by the comparatively slow redissolution of 2-line ferrihydrite. The analysis presented can be used to estimate the transformation rate of naturally occurring 2-line ferrihydrite in aqueous electrolytes characteristic to mine and radioactive waste tailings as well as the formation of corrosion products in cementitious pore solutions.


Assuntos
Compostos Férricos , Compostos de Ferro , Compostos Férricos/química , Compostos de Ferro/química , Minerais/química , Água , Concentração de Íons de Hidrogênio , Oxirredução
3.
Science ; 380(6648): 955-960, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37262165

RESUMO

Transition metal reactivity toward carbon-hydrogen (C-H) bonds hinges on the interplay of electron donation and withdrawal at the metal center. Manipulating this reactivity in a controlled way is difficult because the hypothesized metal-alkane charge-transfer interactions are challenging to access experimentally. Using time-resolved x-ray spectroscopy, we track the charge-transfer interactions during C-H activation of octane by a cyclopentadienyl rhodium carbonyl complex. Changes in oxidation state as well as valence-orbital energies and character emerge in the data on a femtosecond to nanosecond timescale. The x-ray spectroscopic signatures reflect how alkane-to-metal donation determines metal-alkane complex stability and how metal-to-alkane back-donation facilitates C-H bond cleavage by oxidative addition. The ability to dissect charge-transfer interactions on an orbital level provides opportunities for manipulating C-H reactivity at transition metals.

4.
Environ Sci Process Impacts ; 25(7): 1213-1223, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37335293

RESUMO

For the first time, µ-X-ray fluorescence (µ-XRF) mapping combined with fluorine K-edge µ-X-ray absorption near-edge structure (µ-XANES) spectroscopy was applied to depict per- and polyfluoroalkyl substance (PFAS) contamination and inorganic fluoride in sample concentrations down to 100 µg kg-1 fluoride. To demonstrate the matrix tolerance of the method, several PFAS contaminated soil and sludge samples as well as selected consumer product samples (textiles, food contact paper and permanent baking sheets) were investigated. µ-XRF mapping allows for a unique element-specific visualization at the sample surface and enables localization of fluorine containing compounds to a depth of 1 µm. Manually selected fluorine rich spots were subsequently analyzed via fluorine K-edge µ-XANES spectroscopy. To support spectral interpretation with respect to inorganic and organic chemical distribution and compound class determination, linear combination (LC) fitting was applied to all recorded µ-XANES spectra. Complementarily, solvent extracts of all samples were target-analyzed via LC-MS/MS spectrometry. The detected PFAS sum values range from 20 to 1136 µg kg-1 dry weight (dw). All environmentally exposed samples revealed a higher concentration of PFAS with a chain length > C8 (e.g. 580 µg kg-1 dw PFOS for Soil1), whereas the consumer product samples showed a more uniform distribution with regard to chain lengths from C4 to C8. Independent of quantified PFAS amounts via target analysis, µ-XRF mapping combined with µ-XANES spectroscopy was successfully applied to detect both point-specific concentration maxima and evenly distributed surface coatings of fluorinated organic contaminants in the corresponding samples.


Assuntos
Flúor , Fluorocarbonos , Espectroscopia por Absorção de Raios X , Raios X , Fluoretos , Cromatografia Líquida , Espectrometria de Massas em Tandem
5.
Environ Sci Atmos ; 2(6): 1338-1350, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36561554

RESUMO

Here we demonstrate a method for performing X-ray absorption spectroscopy (XAS) on airborne aerosols. XAS provides unique insight into elemental composition, chemical and phase state, local coordination and electronic structure of both crystalline and amorphous matter. The aerosol is generated from different salt solutions using a commercial atomizer and dried using a diffusion drier. Embedded in a carrier gas, the aerosol is guided into the experimental chamber for XAS analysis. Typical particle sizes range from some 10 to a few 100 nm. Inside the chamber the aerosol bearing gas is then confined into a region of about 1-2 cm3 in size, by a pure flow of helium, generating a stable free-flowing stream of aerosol. It is hit by a monochromatic X-ray beam, and the emitted fluorescent light is used for spectroscopic analysis. Using an aerosol generated from CaCl2, KCl, and (NH4)2SO4 salt solutions, we demonstrate the functionality of the system in studying environmentally relevant systems. In addition, we show that the detection limits are sufficient to also observe subtle spectroscopic signatures in XAS spectra with integration times of about 1-2 hours using a bright undulator beamline. This novel setup opens new research opportunities for studying the nucleation of new phases in multicomponent aerosol systems in situ, and for investigating (photo-) chemical reactions on airborne matter, as relevant to both atmospheric science and also for general chemical application.

6.
Lab Chip ; 22(6): 1214-1230, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35170605

RESUMO

This paper presents an X-ray compatible microfluidic platform for in situ characterization of chemical reactions at synchrotron light sources. We demonstrate easy to implement techniques to probe reacting solutions as they first come into contact, and study the very first milliseconds of their reaction in real-time through X-ray absorption spectroscopy (XAS). The devices use polydimethylsiloxane (PDMS) microfluidic channels sandwiched between ultrathin, X-ray transparent silicon nitride observation windows and rigid substrates. The new approach has three key advantages: i) owing to the assembly techniques employed, the devices are suitable for both high energy and tender (1-5 keV) X-rays; ii) they can operate in a vacuum environment (a must for low energy X-rays) and iii) they are robust enough to survive a full 8 hour shift of continuous scanning with a micro-focused beam, providing higher spatial and thus greater time resolution than previous studies. The combination of these opens new opportunities for in situ studies. This has so far not been possible with Kapton or glass-based flow cells due to increased attenuation of the low energy beam passing through these materials. The devices provide a well-defined mixing region to collect spatial maps of spatially stable concentration profiles, and XAS point spectra to elucidate the chemical structure and characterize the chemical reactions. The versatility of the approach is demonstrated through in situ XAS measurements on the mixing of two reactants in a microfluidic laminar flow device, as well as a segmented droplet based system for time resolved analysis.


Assuntos
Microfluídica , Síncrotrons , Dispositivos Lab-On-A-Chip , Raios X
7.
JACS Au ; 1(9): 1412-1421, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34604851

RESUMO

Cu-zeolites are able to directly convert methane to methanol via a three-step process using O2 as oxidant. Among the different zeolite topologies, Cu-exchanged mordenite (MOR) shows the highest methanol yields, attributed to a preferential formation of active Cu-oxo species in its 8-MR pores. The presence of extra-framework or partially detached Al species entrained in the micropores of MOR leads to the formation of nearly homotopic redox active Cu-Al-oxo nanoclusters with the ability to activate CH4. Studies of the activity of these sites together with characterization by 27Al NMR and IR spectroscopy leads to the conclusion that the active species are located in the 8-MR side pockets of MOR, and it consists of two Cu ions and one Al linked by O. This Cu-Al-oxo cluster shows an activity per Cu in methane oxidation significantly higher than of any previously reported active Cu-oxo species. In order to determine unambiguously the structure of the active Cu-Al-oxo cluster, we combine experimental XANES of Cu K- and L-edges, Cu K-edge HERFD-XANES, and Cu K-edge EXAFS with TDDFT and AIMD-assisted simulations. Our results provide evidence of a [Cu2AlO3]2+ cluster exchanged on MOR Al pairs that is able to oxidize up to two methane molecules per cluster at ambient pressure.

8.
Angew Chem Int Ed Engl ; 60(35): 19144-19154, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34062043

RESUMO

We investigated the material properties of Cremonese soundboards using a wide range of spectroscopic, microscopic, and chemical techniques. We found similar types of spruce in Cremonese soundboards as in modern instruments, but Cremonese spruces exhibit unnatural elemental compositions and oxidation patterns that suggest artificial manipulation. Combining analytical data and historical information, we may deduce the minerals being added and their potential functions-borax and metal sulfates for fungal suppression, table salt for moisture control, alum for molecular crosslinking, and potash or quicklime for alkaline treatment. The overall purpose may have been wood preservation or acoustic tuning. Hemicellulose fragmentation and altered cellulose nanostructures are observed in heavily treated Stradivari specimens, which show diminished second-harmonic generation signals. Guarneri's practice of crosslinking wood fibers via aluminum coordination may also affect mechanical and acoustic properties. Our data suggest that old masters undertook materials engineering experiments to produce soundboards with unique properties.

9.
Sci Rep ; 11(1): 5141, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664405

RESUMO

The excellent craftsmanship of ancient Oriental and Central Asian textile dyers is already demonstrated in the remarkable brilliance and fastness of the colours of the so-called Pazyryk carpet, the by far oldest pile carpet found to date. This specimen resembles the advanced craftsmanship of Iron Age Central Asian textile production. We have employed synchrotron-based µ-XRF imaging to detect the distribution of metal organic pigments within individual fibres of the Pazyryk carpet (about 2500 years old) and compare the results to wool fibres, which we prepared according to traditional Anatolian dyeing recipes. We observe congruent pigment distribution within specimens from the Pazyryk carpet and natural wool fibres that we have fermented prior to dyeing. Therefore, we conclude that the superior fermentation technique has been utilized about 2000 years earlier than known so far.

10.
Nat Commun ; 12(1): 1769, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741973

RESUMO

In viscous, organic-rich aerosol particles containing iron, sunlight may induce anoxic conditions that stabilize reactive oxygen species (ROS) and carbon-centered radicals (CCRs). In laboratory experiments, we show mass loss, iron oxidation and radical formation and release from photoactive organic particles containing iron. Our results reveal a range of temperature and relative humidity, including ambient conditions, that control ROS build up and CCR persistence in photochemically active, viscous organic particles. We find that radicals can attain high concentrations, altering aerosol chemistry and exacerbating health hazards of aerosol exposure. Our physicochemical kinetic model confirmed these results, implying that oxygen does not penetrate such particles due to the combined effects of fast reaction and slow diffusion near the particle surface, allowing photochemically-produced radicals to be effectively trapped in an anoxic organic matrix.

11.
Angew Chem Int Ed Engl ; 60(18): 10032-10039, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33523530

RESUMO

The introduction of structural defects in metal-organic frameworks (MOFs), often achieved through the fractional use of defective linkers, is emerging as a means to refine the properties of existing MOFs. These linkers, missing coordination fragments, create unsaturated framework nodes that may alter the properties of the MOF. A property-targeted utilization of this approach demands an understanding of the structure of the defect-engineered MOF. We demonstrate that full-field X-ray absorption near-edge structure computed tomography can help to improve our understanding. This was demonstrated by visualizing the chemical heterogeneity found in defect-engineered HKUST-1 MOF crystals. A non-uniform incorporation and zonation of the defective linker was discovered, leading to the presence of clusters of a second coordination polymer within HKUST-1. The former is suggested to be responsible, in part, for altered MOF properties; thereby, advocating for a spatio-chemically resolved characterization of MOFs.

12.
ACS Meas Sci Au ; 1(1): 27-34, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36785734

RESUMO

Droplet-based microfluidic systems are ideally suited for the investigation of nucleation and crystallization processes. To best leverage the features of such platforms (including exquisite time resolution and high-throughput operation), sensitive and in situ detection schemes are needed to extract real-time chemical information about all species of interest. In this regard, the extension of conventional (UV, visible, and infrared) optical detection schemes to the X-ray region of the electromagnetic spectrum is of high current interest, as techniques such as X-ray absorption spectroscopy (XAS) provide for the element-specific investigation of the local chemical environment. Accordingly, herein, we report for the first time the integration of millisecond droplet-based microfluidics with XAS. Such a platform allows for the sensitive acquisition of X-ray absorption data from picoliter-volume droplets moving at high linear velocities. Significantly, the high-temporal resolution of the droplet-based microfluidic platform enables unprecedented access to the early stages of the reaction. Using such an approach, we demonstrate in situ monitoring of calcium carbonate precipitation by extracting XAS spectra at the early time points of the reaction with a dead time as low as 10 ms. We obtain insights into the kinetics of the formation of amorphous calcium carbonate (ACC) as a first species during the crystallization process by monitoring the proportion of calcium ions converted into ACC. Within the confined and homogeneous environment of picoliter-volume droplets, the ACC content reaches 60% over the first 130 ms. More generally, the presented method offers new opportunities for the real-time monitoring of fast chemical and biological processes.

13.
Environ Sci Process Impacts ; 22(9): 1916, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32785410

RESUMO

Correction for 'Multimodal X-ray microanalysis of a UFeO4 particle: evidence for the environmental stability of ternary U(v) oxides from depleted uranium munitions testing' by Daniel E. Crean et al., Environ. Sci.: Processes Impacts, 2020, DOI: 10.1039/d0em00243g.

14.
Environ Sci Process Impacts ; 22(7): 1577-1585, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32632425

RESUMO

An environmentally aged radioactive particle of UFeO4 recovered from soil contaminated with munitions depleted uranium (DU) was characterised by microbeam synchrotron X-ray analysis. Imaging of uranium speciation by spatially resolved X-ray diffraction (µ-XRD) and X-ray absorption spectroscopy (µ-XAS) was used to localise UFeO4 in the particle, which was coincident with a distribution of U(v). The U oxidation state was confirmed using X-ray Absorption Near Edge Structure (µ-XANES) spectroscopy as +4.9 ± 0.15. Le-Bail fitting of the particle powder XRD pattern confirmed the presence of UFeO4 and a minor alteration product identified as chernikovite (H3O)(UO2)(PO4)·3H2O. Refined unit cell parameters for UFeO4 were in good agreement with previously published values. Uranium-oxygen interatomic distances in the first co-ordination sphere were determined by fitting of Extended X-ray Absorption Fine Structure (µ-EXAFS) spectroscopy. The average first shell U-O distance was 2.148 ± 0.012 Å, corresponding to a U valence of +4.96 ± 0.13 using bond valence sum analysis. Using bond distances from the published structure of UFeO4, U and Fe bond valence sums were calculated as +5.00 and +2.83 respectively, supporting the spectroscopic analysis and confirming the presence of a U(v)/Fe(iii) pair. Overall this investigation provides important evidence for the stability of U(v) ternary oxides, in oxic, variably moist surface environment conditions for at least 25 years.


Assuntos
Poluentes Radioativos do Solo , Urânio , Microanálise por Sonda Eletrônica , Compostos Férricos , Óxidos , Espectroscopia por Absorção de Raios X
15.
Sci Total Environ ; 715: 136895, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32007883

RESUMO

Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammonium can enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and an ammonium sulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water-insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammonium in the soil resulted in a high amount of plant available ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammonium uptake, which mobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability.


Assuntos
Solo , Fertilizantes , Nitrificação , Nitrogênio , Fósforo , Zea mays
16.
New Phytol ; 225(4): 1476-1490, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31591727

RESUMO

Rhizosphere soil has distinct physical and chemical properties from bulk soil. However, besides root-induced physical changes, chemical changes have not been extensively measured in situ on the pore scale. In this study, we couple structural information, previously obtained using synchrotron X-ray computed tomography (XCT), with synchrotron X-ray fluorescence microscopy (XRF) and X-ray absorption near-edge structure (XANES) to unravel chemical changes induced by plant roots. Our results suggest that iron (Fe) and sulfur (S) increase notably in the direct vicinity of the root via solubilization and microbial activity. XANES further shows that Fe is slightly reduced, S is increasingly transformed into sulfate (SO42- ) and phosphorus (P) is increasingly adsorbed to humic substances in this enrichment zone. In addition, the ferrihydrite fraction decreases drastically, suggesting the preferential dissolution and the formation of more stable Fe oxides. Additionally, the increased transformation of organic S to sulfate indicates that the microbial activity in this zone is increased. These changes in soil chemistry correspond to the soil compaction zone as previously measured via XCT. The fact that these changes are colocated near the root and the compaction zone suggests that decreased permeability as a result of soil structural changes acts as a barrier creating a zone with increased rhizosphere chemical interactions via surface-mediated processes, microbial activity and acidification.


Assuntos
Ferro/química , Fósforo/química , Raízes de Plantas/fisiologia , Rizosfera , Solo/química , Enxofre/química , Hordeum , Microscopia de Fluorescência/métodos , Síncrotrons , Tomografia Computadorizada por Raios X/métodos
17.
Chem Commun (Camb) ; 55(72): 10725-10728, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31429426

RESUMO

A facile aerosol-based method for the synthesis of pure and stable amorphous calcium carbonate (ACC) is presented. The method relies on the instantaneous carbonation of calcium hydroxide aerosols with carbon dioxide followed by rapid drying of the freshly formed ACC. The ACC display extended stability against humidity induced crystallization.

18.
RSC Adv ; 9(58): 34004-34010, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-35528920

RESUMO

The understanding of nucleation and crystallization is fundamental in science and technology. In solution, these processes are complex involving multiple transformations from ions and ion pairs through amorphous intermediates to multiple crystalline phases. X-ray absorption spectroscopy (XAS), which is sensitive to liquid, amorphous and crystalline phases offers prospects of demystifying these processes. However, for low Z elements the use of in situ X-ray absorption spectroscopy requires the tender X-ray range, which is often limited by vacuum requirements thereby complicating these measurements. To overcome these challenges, we developed a versatile and user-friendly droplet-based in situ X-ray absorption spectroscopy cell for studying crystallization processes. Time-resolved in situ experiments under ambient conditions are carried out in the cell whilst the cell is mounted in the vacuum chamber of a tender X-ray beamline. By following changes in the Ca K-edge X-ray absorption near edge structure (XANES), we captured in situ the intermediate phases involved during calcium carbonate crystallization from aqueous solutions. In addition, through linear combination fitting it was possible to qualitatively observe the evolution of each phase during the reaction demonstrating the potential of the cell in studying complex multiphase chemical processes.

19.
J Synchrotron Radiat ; 25(Pt 1): 16-19, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29271745

RESUMO

One of the remaining challenges for accurate photon diagnostics at X-ray free-electron lasers (FELs) is the shot-to-shot, non-destructive, high-resolution characterization of the FEL pulse spectrum at photon energies between 2 keV and 4 keV, the so-called tender X-ray range. Here, a spectrometer setup is reported, based on the von Hamos geometry and using elastic scattering as a fingerprint of the FEL-generated spectrum. It is capable of pulse-to-pulse measurement of the spectrum with an energy resolution (ΔE/E) of 10-4, within a bandwidth of 2%. The Tender X-ray Single-Shot Spectrometer (TXS) will grant to experimental scientists the freedom to measure the spectrum in a single-shot measurement, keeping the transmitted beam undisturbed. It will enable single-shot reconstructions for easier and faster data analysis.

20.
Scanning ; 2017: 6346212, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29109824

RESUMO

Many handmade ancient and recent oriental wool carpets show outstanding brilliance and persistence of colour that is not achieved by common industrial dyeing procedures. Anthropologists have suggested the influence of wool fermentation prior to dyeing as key technique to achieve the high dyeing quality. By means of µ-XRF elemental mapping of mordant metals we corroborate this view and show a deep and homogenous penetration of colourants into fermented wool fibres. Furthermore we are able to apply this technique and prove that the fermentation process for ancient specimens cannot be investigated by standard methods due to the lack of intact cuticle layers. This finding suggests a broad range of further investigations that will contribute to a deeper understanding of the development of traditional dyeing techniques. Spectroscopic studies add information on the oxidation states of the metal ions within the respective mordant-dye-complexes and suggest a partial charge transfer as basis for a significant colour change when Fe mordants are used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...