Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Dermatol ; 33(3): e15034, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38459631

RESUMO

Polymorphic light eruption (PLE) has been mechanistically linked to cytokine abnormalities. Emerging preclinical evidence posits the skin microbiome as a critical modulator of ultraviolet (UV)-induced cytokine expression, thereby influencing subsequent immune responses. This intricate relationship remains underexplored in the context of PLE. Hence, we investigated the differential responses between disinfected and non-disinfected skin following both single and repetitive exposures to solar-simulated UV radiation in patients with PLE. An experimental, half-body pilot study was conducted involving six PLE patients and 15 healthy controls. Participants' skin was exposed to single and multiple doses of solar-simulated UV radiation, both in disinfected and in non-disinfected skin areas. The co-primary outcomes were PLE score and cytokine expression in blister fluid analysed through OLINK proteomic profiling. Secondary outcomes were erythema, pigmentation, induction of apoptotic cells in vacuum-generated suction blisters, and density of infiltrate in skin biopsies of PLE patients. Among the 71 cytokines analysed, baseline expression levels of 20 specific cytokines-integral to processes such as apoptosis, inflammation, immune cell recruitment, cellular growth, and differentiation-were significantly impaired in PLE patients compared with healthy controls. Notably, skin disinfection reversed the observed cytokine imbalances following a single UV exposure at the minimal erythema dose (MED) level and exhibited even more pronounced effects after multiple UV exposures. However, no significant differences were evident in PLE score, erythema, pigmentation, or rates of apoptotic cell induction upon UV radiation. These findings provide evidence for UV-driven cytokine regulation by the skin microbiota and imply microbiome involvement in the PLE immune response.


Assuntos
Dermatite de Contato , Transtornos de Fotossensibilidade , Humanos , Transtornos de Fotossensibilidade/metabolismo , Projetos Piloto , Proteômica , Pele/patologia , Raios Ultravioleta , Citocinas , Eritema
2.
Res Sq ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38410434

RESUMO

Little is known about IL-17 expression in psoriasis and the actual cellular source of IL-17 remains incompletely defined. We show that high numbers of IL-17 + mast cells persisted in resolved lesions after treatment (anti-IL-17A, anti-IL-23, UVB or topical dithranol) and correlated inversely with the time span in remission. IL-17 + mast cells were found in T cell-rich areas and often close to resident memory T cells (Trm) in active psoriasis and resolved lesional skin. Digital cytometry by deconvolution of RNA-seq data showed that activated mast cells were increased in psoriatic skin, while resting mast cells were almost absent and both returned to normal levels after treatment. When primary human skin mast cells were stimulated with T cell cytokines (TNFα, IL-22 and IFNγ), they responded by releasing more IL-17A, as measured by ELISA. In situ mRNA detection using padlock probes specific for transcript variants of IL17A, IL17F, and RORC (encoding the Th17 transcription factor RORγt) revealed positive mRNA signals for IL17A, IL17F, and RORCin tryptase + cells, demonstrating that mast cells have the transcriptional machinery to actively produce IL-17. Mast cells thus belong to the center of the IL-23/IL-17 axis and high numbers of IL-17 + mast cells predict an earlier disease recurrence.

3.
J Invest Dermatol ; 144(3): 500-508.e3, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37865179

RESUMO

Eukaryotic initiation factor 4E (eIF4E) has been known to play a critical role in the regulation of gene expression and essential cellular processes, such as proliferation, apoptosis and differentiation. In this study, we explored its role in the pathophysiology of psoriasis. The inhibition of eIF4E by small interfering RNA or briciclib, an eIF4E small molecule inhibitor, downregulated the expression of eIF4E itself and its two complex partners eIF4A and G, as well as other eIFs (eg, eIF1A, eIF2α, eIF3A, eIF3B, eIF5, and eIF6). This inhibition also abolished psoriatic inflammation in both the imiquimod and TGFß mouse model, as well as in a human 3 dimensional-psoriasis tissue model. Downregulation of eIF4E and the other eIFs by application of briciclib (particularly when given topically) was linked to the normalization of cellular proliferation, epidermal hyperplasia, levels of proinflammatory cytokines (eg, TNFα, IL-1b, IL-17, and IL-22), and keratinocyte differentiation markers (eg, KRT16 and FLG). These results demonstrate translational imbalance and underline the crucial role played by eIF4E and other eIFs in the pathophysiology of psoriasis. This work opens up avenues for the development of novel topical antipsoriatic treatment strategies by targeting eIF4E.


Assuntos
Fator de Iniciação 4E em Eucariotos , Psoríase , Animais , Camundongos , Humanos , Fator de Iniciação 4E em Eucariotos/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Processamento de Proteína Pós-Traducional , Psoríase/tratamento farmacológico
4.
Drug Resist Updat ; 71: 100993, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37639774

RESUMO

AIMS: Drivers of the drug tolerant proliferative persister (DTPP) state have not been well investigated. Histone H3 lysine-4 trimethylation (H3K4me3), an active histone mark, might enable slow cycling drug tolerant persisters (DTP) to regain proliferative capacity. This study aimed to determine H3K4me3 transcriptionally active sites identifying a key regulator of DTPPs. METHODS: Deploying a model of adaptive cancer drug tolerance, H3K4me3 ChIP-Seq data of DTPPs guided identification of top transcription factor binding motifs. These suggested involvement of O-linked N-acetylglucosamine transferase (OGT), which was confirmed by metabolomics analysis and biochemical assays. OGT impact on DTPPs and adaptive resistance was explored in vitro and in vivo. RESULTS: H3K4me3 remodeling was widespread in CPG island regions and DNA binding motifs associated with O-GlcNAc marked chromatin. Accordingly, we observed an upregulation of OGT, O-GlcNAc and its binding partner TET1 in chronically treated cancer cells. Inhibition of OGT led to loss of H3K4me3 and downregulation of genes contributing to drug resistance. Genetic ablation of OGT prevented acquired drug resistance in in vivo models. Upstream of OGT, we identified AMPK as an actionable target. AMPK activation by acetyl salicylic acid downregulated OGT with similar effects on delaying acquired resistance. CONCLUSION: Our findings uncover a fundamental mechanism of adaptive drug resistance that governs cancer cell reprogramming towards acquired drug resistance, a process that can be exploited to improve response duration and patient outcomes.


Assuntos
Proteínas Quinases Ativadas por AMP , Histonas , Humanos , Histonas/genética , Regulação para Baixo , Oxigenases de Função Mista , Proteínas Proto-Oncogênicas
5.
medRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37292870

RESUMO

Background: Pulmonary hypertension (PH) poses a significant health threat with high morbidity and mortality, necessitating improved diagnostic tools for enhanced management. Current biomarkers for PH lack functionality and comprehensive diagnostic and prognostic capabilities. Therefore, there is a critical need to develop biomarkers that address these gaps in PH diagnostics and prognosis. Methods: To address this need, we employed a comprehensive metabolomics analysis in 233 blood based samples coupled with machine learning analysis. For functional insights, human pulmonary arteries (PA) of idiopathic pulmonary arterial hypertension (PAH) lungs were investigated and the effect of extrinsic FFAs on human PA endothelial and smooth muscle cells was tested in vitro. Results: PA of idiopathic PAH lungs showed lipid accumulation and altered expression of lipid homeostasis-related genes. In PA smooth muscle cells, extrinsic FFAs caused excessive proliferation and endothelial barrier dysfunction in PA endothelial cells, both hallmarks of PAH.In the training cohort of 74 PH patients, 30 disease controls without PH, and 65 healthy controls, diagnostic and prognostic markers were identified and subsequently validated in an independent cohort. Exploratory analysis showed a highly impacted metabolome in PH patients and machine learning confirmed a high diagnostic potential. Fully explainable specific free fatty acid (FFA)/lipid-ratios were derived, providing exceptional diagnostic accuracy with an area under the curve (AUC) of 0.89 in the training and 0.90 in the validation cohort, outperforming machine learning results. These ratios were also prognostic and complemented established clinical prognostic PAH scores (FPHR4p and COMPERA2.0), significantly increasing their hazard ratios (HR) from 2.5 and 3.4 to 4.2 and 6.1, respectively. Conclusion: In conclusion, our research confirms the significance of lipidomic alterations in PH, introducing innovative diagnostic and prognostic biomarkers. These findings may have the potential to reshape PH management strategies.

6.
Sci Rep ; 13(1): 7207, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137992

RESUMO

Skin metabolites (< 1500 Da) play a critical role in barrier function, hydration, immune response, microbial invasion, and allergen penetration. We aimed to understand the global metabolic profile changes of the skin in relation to the microbiome and UV exposure and exposed germ-free (devoid of microbiome), disinfected mice (partially devoid of skin microbiome) and control mice with intact microbiome to immunosuppressive doses of UVB radiation. Targeted and untargeted lipidome and metabolome profiling was performed with skin tissue by high-resolution mass spectrometry. UV differentially regulated various metabolites such as alanine, choline, glycine, glutamine, and histidine in germ-free mice compared to control mice. Membrane lipid species such as phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin were also affected by UV in a microbiome-dependent manner. These results shed light on the dynamics and interactions between the skin metabolome, microbiome, and UV exposure and open new avenues for the development of metabolite- or lipid-based applications to maintain skin health.


Assuntos
Microbiota , Camundongos , Animais , Metaboloma/fisiologia , Pele , Raios Ultravioleta , Espectrometria de Massas
7.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35563072

RESUMO

The transition from the fetal to the neonatal circulation includes dilatation of the pulmonary arteries (PA) and closure of the Ductus Arteriosus Botalli (DAB). The resting membrane potential and various potassium channel activities in smooth muscle cells (SMC) from fetal and neonatal PA and DAB obtained from the same species has not been systematically analyzed. The key issue addressed in this paper is how the resting membrane potential and the whole-cell potassium current (IK) change when PASMC or DABSMC are transitioned from hypoxia, reflecting the fetal state, to normoxia, reflecting the post-partal state. Patch-clamp measurements were employed to characterize whole-cell K+ channel activity in fetal and post-partal (newborn) PASMC and DABSMC. The main finding of this paper is that the SMC from both tissues use a similar set of K+ channels (voltage-dependent (Kv), calcium-sensitive (KCa), TASK-1 and probably also TASK-2 channels); however, their activity level depends on the cell type and the oxygen level. Furthermore, we provide the first evidence for pH-sensitive non-inactivating K+ current in newborn DABSMC and PASMC, suggesting physiologically relevant TASK-1 and TASK-2 channel activity, the latter particularly in the Ductus Arteriosus Botalli.


Assuntos
Canal Arterial , Canais de Potássio , Circulação Pulmonar , Animais , Canal Arterial/metabolismo , Desenvolvimento Fetal/fisiologia , Humanos , Recém-Nascido , Músculo Liso Vascular/metabolismo , Canais de Potássio/metabolismo , Artéria Pulmonar/metabolismo , Circulação Pulmonar/fisiologia , Ratos
8.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502263

RESUMO

The regulator of G protein signaling (RGS) represents a widespread system of controllers of cellular responses. The activities of the R4 subfamily of RGSs have been elucidated in allergic pulmonary diseases. However, the R4 signaling in other inflammatory lung diseases, with a strong cellular immune response, remained unexplored. Thus, our study aimed to discern the functional relevance of the R4 family member, RGS5, as a potential modulating element in this context. Gene profiling of the R4 subfamily showed increased RGS5 expression in human fibrosing lung disease samples. In line with this, RGS5 was markedly increased in murine lungs following bleomycin injury. RGS knock-out mice (RGS-/-) had preserved lung function while control mice showed significant combined ventilatory disorders three days after bleomycin application as compared to untreated control mice. Loss of RGS5 was associated with a significantly reduced neutrophil influx and tissue myeloperoxidase expression. In the LPS lung injury model, RGS5-/- mice also failed to recruit neutrophils into the lung, which was accompanied by reduced tissue myeloperoxidase levels after 24 h. Our in-vitro assays showed impaired migration of RGS5-/- neutrophils towards chemokines despite preserved Ca2+ signaling. ERK dephosphorylation might play a role in reduced neutrophil migration in our model. As a conclusion, loss of RGS5 preserves lung function and attenuates hyperinflammation in the acute phase of bleomycin-induced pulmonary fibrosis and LPS-induced lung injury. Targeting RGS5 might alleviate the severity of exacerbations in interstitial lung diseases.


Assuntos
Inflamação/metabolismo , Lesão Pulmonar/metabolismo , Neutrófilos/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Animais , Bleomicina/toxicidade , Quimiotaxia/genética , Modelos Animais de Doenças , Fibrose/genética , Humanos , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/metabolismo , Doenças Pulmonares Intersticiais/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Knockout , Neutrófilos/citologia , Proteínas RGS/deficiência , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/metabolismo
9.
Antioxidants (Basel) ; 10(6)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072235

RESUMO

Timely centrifugation of blood for plasma preparation is a key step to ensure high plasma quality for analytics. Delays during preparation can significantly influence readouts of key clinical parameters. However, in a routine clinical environment, a strictly controlled timeline is often not feasible. The next best approach is to control for sample preparation delays by a marker that provides a readout of the time-dependent degradation of the sample. In this study, we explored the usefulness of glutathione status as potential marker of plasma preparation delay. As the concentration of glutathione in erythrocytes is at least two orders of magnitude higher than in plasma, even the slightest leakage of glutathione from the cells can be readily observed. Over the 3 h observation period employed in this study, we observed a linear increase of plasma concentrations of both reduced (GSH) and oxidized glutathione (GSSG). Artificial oxidation of GSH is prevented by rapid alkylation with N-ethylmaleimide directly in the blood sampling vessel as recently published. The observed relative leakage of GSH was significantly higher than that of GSSG. A direct comparison with plasma lactate dehydrogenase activity, a widely employed hemolysis marker, clearly demonstrated the superiority of our approach for quality control. Moreover, we show that the addition of the thiol alkylating reagent NEM directly to the blood tubes does not influence downstream analysis of other clinical parameters. In conclusion, we report that GSH gives an excellent readout of the duration of plasma preparation and the associated pre-analytical errors.

10.
iScience ; 23(12): 101819, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33319168

RESUMO

The bleomycin mouse model is the extensively used model to study pulmonary fibrosis; however, the inflammatory cell kinetics and their compartmentalization is still incompletely understood. Here we assembled historical flow cytometry data, totaling 303 samples and 16 inflammatory-cell populations, and applied advanced data modeling and machine learning methods to conclusively detail these kinetics. Three days post-bleomycin, the inflammatory profile was typified by acute innate inflammation, pronounced neutrophilia, especially of SiglecF+ neutrophils, and alveolar macrophage loss. Between 14 and 21 days, rapid responders were increasingly replaced by T and B cells and monocyte-derived alveolar macrophages. Multicolour imaging revealed the spatial-temporal cell distribution and the close association of T cells with deposited collagen. Unbiased immunophenotyping and data modeling exposed the dynamic shifts in immune-cell composition over the course of bleomycin-triggered lung injury. These results and workflow provide a reference point for future investigations and can easily be applied in the analysis of other datasets.

12.
Int J Mol Sci ; 20(24)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31835296

RESUMO

The kinase AKT2 (PKB) is an important mediator of insulin signaling, for which loss-of-function knockout (KO) mutants lead to early onset diabetes mellitus, and dominant active mutations lead to early development of obesity and endothelial cell (EC) dysfunction. To model EC dysfunction, we used edited human pluripotent stem cells (hPSCs) that carried either a homozygous deletion of AKT2 (AKT2 KO) or a dominant active mutation (AKT2 E17K), which, along with the parental wild type (WT), were differentiated into ECs. Profiling of EC lines indicated an increase in proinflammatory and a reduction in anti-inflammatory fatty acids, an increase in inflammatory chemokines in cell supernatants, increased expression of proinflammatory genes, and increased binding to the EC monolayer in a functional leukocyte adhesion assay for both AKT2 KO and AKT2 E17K. Collectively, these findings suggest that vascular endothelial inflammation that results from dysregulated insulin signaling (homeostasis) may contribute to coronary artery disease, and that either downregulation or upregulation of the insulin pathway may lead to inflammation of endothelial cells. This suggests that the standard of care for patients must be expanded from control of metabolic parameters to include control of inflammation, such that endothelial dysfunction and cardiovascular disorders can ultimately be prevented.


Assuntos
Células Endoteliais/metabolismo , Edição de Genes , Síndrome Metabólica , Modelos Biológicos , Células-Tronco Pluripotentes/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Inflamação/genética , Inflamação/metabolismo , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo
13.
Cell Metab ; 30(3): 462-476.e6, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31471173

RESUMO

Caloric restriction and intermittent fasting are known to prolong life- and healthspan in model organisms, while their effects on humans are less well studied. In a randomized controlled trial study (ClinicalTrials.gov identifier: NCT02673515), we show that 4 weeks of strict alternate day fasting (ADF) improved markers of general health in healthy, middle-aged humans while causing a 37% calorie reduction on average. No adverse effects occurred even after >6 months. ADF improved cardiovascular markers, reduced fat mass (particularly the trunk fat), improving the fat-to-lean ratio, and increased ß-hydroxybutyrate, even on non-fasting days. On fasting days, the pro-aging amino-acid methionine, among others, was periodically depleted, while polyunsaturated fatty acids were elevated. We found reduced levels sICAM-1 (an age-associated inflammatory marker), low-density lipoprotein, and the metabolic regulator triiodothyronine after long-term ADF. These results shed light on the physiological impact of ADF and supports its safety. ADF could eventually become a clinically relevant intervention.


Assuntos
Envelhecimento/sangue , Jejum/efeitos adversos , Jejum/sangue , Envelhecimento Saudável/sangue , Ácido 3-Hidroxibutírico/sangue , Adulto , Biomarcadores/sangue , Índice de Massa Corporal , Restrição Calórica/efeitos adversos , Ingestão de Energia/fisiologia , Ácidos Graxos Insaturados/sangue , Feminino , Voluntários Saudáveis , Humanos , Molécula 1 de Adesão Intercelular/sangue , Lipoproteínas LDL/sangue , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Tri-Iodotironina/sangue , Redução de Peso
14.
J Invest Dermatol ; 139(12): 2506-2516.e10, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31229500

RESUMO

Melanoma cells shift between epigenetic-metabolic states to adapt to stress and, particularly, to drugs. Here, we unraveled the metabolome of an H3K4 demethylase (KDM5B/JARID1B)-driven melanoma cell phenotype that is known to be multidrug resistant. We set up a fast protocol for standardized, highly sensitive liquid chromatography-high resolution mass spectrometry analyzing stably controlled KDM5B expression by RNAi or doxycycline-induced overexpression. Within the KDM5B-dependent metabolome, we found significant and highly specific regulation of 11 intracellular metabolites. Functionally, overexpression of KDM5B in melanoma cells led to broadening of their oxidative metabolism from mainly glutamine-dependent to additionally glucose- and fatty acid-utilizing, upregulation of the pentose phosphate pathway as a source of antioxidant NADPH, and maintenance of a high ratio of reduced to oxidized glutathione. Histone lysine demethylase inhibition (GSK-J1, 2,4-PDCA) decreased colony formation and invasion in three-dimensional models. Thus, targeting KDM5B could represent an alternative way of modulating the metabolome and malignant cell behavior in melanoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Histonas/genética , Histona Desmetilases com o Domínio Jumonji/genética , Melanoma/genética , Metaboloma/genética , Proteínas Nucleares/genética , RNA Neoplásico/genética , Proteínas Repressoras/genética , Neoplasias Cutâneas/genética , Linhagem Celular Tumoral , Proliferação de Células , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/biossíntese , Melanoma/metabolismo , Melanoma/patologia , Proteínas Nucleares/biossíntese , Fenótipo , Proteínas Repressoras/biossíntese , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
15.
J Lipid Res ; 60(4): 758-766, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30696699

RESUMO

Eicosanoids are lipid-mediator molecules with key roles in inflammatory skin diseases, such as psoriasis. Eicosanoids are released close to the source of inflammation, where they elicit local pleiotropic effects and dysregulations. Monitoring inflammatory mediators directly in skin lesions could provide new insights and therapeutic possibilities. Here, we analyzed dermal interstitial fluid samples obtained by dermal open-flow microperfusion in a rat model of skin inflammation. We developed a solid-phase extraction ultra-HPLC/MS/MS method to reliably and precisely analyze small-volume samples and quantified 11 eicosanoids [thromboxane B2, prostaglandin (PG) E2, PGD2, PGF2α, leukotriene B4, 15-HETE, 12-HETE, 5-HETE, 12-hydroxyeicosapentaenoic acid, 13-HODE, and 17-hydroxydocosahexaenoic acid]. Our method achieved a median intraday precision of approximately 5% and interday precision of approximately 8%. All calibration curves showed excellent linearity between 0.01 and 50 ng/ml (R2 > 0.980). In the rat model, eicosanoids were significantly increased in imiquimod-treated inflamed skin sites compared with untreated control sites. Oral treatment with an anti-inflammatory glucocorticoid decreased eicosanoid concentrations. These results show that a combination of tissue-specific sampling with LC/MS analytics is well suited for analyzing small sample volumes from minimally invasive sampling methods such as open-flow microperfusion or microdialysis to study local inflammation and the effect of treatments in skin diseases.


Assuntos
Modelos Animais de Doenças , Eicosanoides/análise , Inflamação/metabolismo , Dermatopatias/metabolismo , Pele/química , Extração em Fase Sólida , Animais , Anti-Inflamatórios/farmacologia , Cromatografia Líquida de Alta Pressão , Eicosanoides/antagonistas & inibidores , Eicosanoides/metabolismo , Glucocorticoides/farmacologia , Inflamação/tratamento farmacológico , Masculino , Ratos , Ratos Sprague-Dawley , Pele/metabolismo , Dermatopatias/tratamento farmacológico , Espectrometria de Massas em Tandem
17.
Arch Toxicol ; 92(2): 893-906, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28965233

RESUMO

Liver toxicity is a leading systemic toxicity of drugs and chemicals demanding more human-relevant, high throughput, cost effective in vitro solutions. In addition to contributing to animal welfare, in vitro techniques facilitate exploring and understanding the molecular mechanisms underlying toxicity. New 'omics technologies can provide comprehensive information on the toxicological mode of action of compounds, as well as quantitative information about the multi-parametric metabolic response of cellular systems in normal and patho-physiological conditions. Here, we combined mass-spectroscopy metabolomics with an in vitro liver toxicity model. Metabolite profiles of HepG2 cells treated with 35 test substances resulted in 1114 cell supernatants and 3556 intracellular samples analyzed by metabolomics. Control samples showed relative standard deviations of about 10-15%, while the technical replicates were at 5-10%. Importantly, this procedure revealed concentration-response effects and patterns of metabolome changes that are consistent for different liver toxicity mechanisms (liver enzyme induction/inhibition, liver toxicity and peroxisome proliferation). Our findings provide evidence that identifying organ toxicity can be achieved in a robust, reliable, human-relevant system, representing a non-animal alternative for systemic toxicology.


Assuntos
Fígado/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Testes de Toxicidade , Alternativas aos Testes com Animais , Indução Enzimática , Células Hep G2 , Humanos , Fígado/metabolismo , Metabolômica
18.
Diabetes ; 66(2): 272-286, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27650854

RESUMO

Glucocorticoids (GCs) are important regulators of systemic energy metabolism, and aberrant GC action is linked to metabolic dysfunctions. Yet, the extent to which normal and pathophysiological energy metabolism depend on the GC receptor (GR) in adipocytes remains unclear. Here, we demonstrate that adipocyte GR deficiency in mice significantly impacts systemic metabolism in different energetic states. Plasma metabolomics and biochemical analyses revealed a marked global effect of GR deficiency on systemic metabolite abundance and, thus, substrate partitioning in fed and fasted states. This correlated with a decreased lipolytic capacity of GR-deficient adipocytes under postabsorptive and fasting conditions, resulting from impaired signal transduction from ß-adrenergic receptors to adenylate cyclase. Upon prolonged fasting, the impaired lipolytic response resulted in abnormal substrate utilization and lean mass wasting. Conversely, GR deficiency attenuated aging-/diet-associated obesity, adipocyte hypertrophy, and liver steatosis. Systemic glucose tolerance was improved in obese GR-deficient mice, which was associated with increased insulin signaling in muscle and adipose tissue. We conclude that the GR in adipocytes exerts central but diverging roles in the regulation of metabolic homeostasis depending on the energetic state. The adipocyte GR is indispensable for the feeding-fasting transition but also promotes adiposity and associated metabolic disorders in fat-fed and aged mice.


Assuntos
Adipócitos/metabolismo , Envelhecimento/genética , Jejum , Comportamento Alimentar , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Obesidade/genética , Receptores de Glucocorticoides/genética , Adenilil Ciclases/metabolismo , Tecido Adiposo/metabolismo , Adiposidade/genética , Envelhecimento/metabolismo , Animais , Western Blotting , Cromatografia Líquida , Dieta Hiperlipídica , Metabolismo Energético , Fígado Gorduroso/genética , Hipertrofia , Insulina/metabolismo , Lipólise , Espectrometria de Massas , Metabolômica , Camundongos , Obesidade/metabolismo , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais
19.
PLoS One ; 11(7): e0159389, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27438065

RESUMO

The metabolome offers real time detection of the adaptive, multi-parametric response of the organisms to environmental changes, pathophysiological stimuli or genetic modifications and thus rationalizes the optimization of cell cultures in bioprocessing. In bioprocessing the measurement of physiological intracellular metabolite levels is imperative for successful applications. However, a sampling method applicable to all cell types with little to no validation effort which simultaneously offers high recovery rates, high metabolite coverage and sufficient removal of extracellular contaminations is still missing. Here, quenching, centrifugation and fast filtration were compared and fast filtration in combination with a stabilizing washing solution was identified as the most promising sampling method. Different influencing factors such as filter type, vacuum pressure, washing solutions were comprehensively tested. The improved fast filtration method (MxP® FastQuench) followed by routine lipid/polar extraction delivers a broad metabolite coverage and recovery reflecting well physiological intracellular metabolite levels for different cell types, such as bacteria (Escherichia coli) as well as mammalian cells chinese hamster ovary (CHO) and mouse myeloma cells (NS0).The proposed MxP® FastQuench allows sampling, i.e. separation of cells from medium with washing and quenching, in less than 30 seconds and is robustly designed to be applicable to all cell types. The washing solution contains the carbon source respectively the 13C-labeled carbon source to avoid nutritional stress during sampling. This method is also compatible with automation which would further reduce sampling times and the variability of metabolite profiling data.


Assuntos
Técnicas de Cultura de Células/métodos , Escherichia coli K12/isolamento & purificação , Filtração/métodos , Monofosfato de Adenosina/análise , Trifosfato de Adenosina/análise , Animais , Células CHO , Carbono/análise , Centrifugação , Cricetinae , Cricetulus , Filtração/instrumentação , Ácido Glutâmico/análise , Mamíferos , Metaboloma , Metabolômica/métodos , Soluções , Vácuo
20.
Brain Behav Immun ; 56: 140-55, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26923630

RESUMO

Emerging evidence indicates that disruption of the gut microbial community (dysbiosis) impairs mental health. Germ-free mice and antibiotic-induced gut dysbiosis are two approaches to establish causality in gut microbiota-brain relationships. However, both models have limitations, as germ-free mice display alterations in blood-brain barrier and brain ultrastructure and antibiotics may act directly on the brain. We hypothesized that the concerns related to antibiotic-induced gut dysbiosis can only adequately be addressed if the effect of intragastric treatment of adult mice with multiple antibiotics on (i) gut microbial community, (ii) metabolite profile in the colon, (iii) circulating metabolites, (iv) expression of neuronal signaling molecules in distinct brain areas and (v) cognitive behavior is systematically investigated. Of the antibiotics used (ampicillin, bacitracin, meropenem, neomycin, vancomycin), ampicillin had some oral bioavailability but did not enter the brain. 16S rDNA sequencing confirmed antibiotic-induced microbial community disruption, and metabolomics revealed that gut dysbiosis was associated with depletion of bacteria-derived metabolites in the colon and alterations of lipid species and converted microbe-derived molecules in the plasma. Importantly, novel object recognition, but not spatial, memory was impaired in antibiotic-treated mice. This cognitive deficit was associated with brain region-specific changes in the expression of cognition-relevant signaling molecules, notably brain-derived neurotrophic factor, N-methyl-d-aspartate receptor subunit 2B, serotonin transporter and neuropeptide Y system. We conclude that circulating metabolites and the cerebral neuropeptide Y system play an important role in the cognitive impairment and dysregulation of cerebral signaling molecules due to antibiotic-induced gut dysbiosis.


Assuntos
Antibacterianos/efeitos adversos , Encéfalo/metabolismo , Disfunção Cognitiva , Colo/metabolismo , Disbiose , Microbioma Gastrointestinal/efeitos dos fármacos , Reconhecimento Psicológico , Memória Espacial , Animais , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Modelos Animais de Doenças , Disbiose/induzido quimicamente , Disbiose/complicações , Disbiose/metabolismo , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...