Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 22(3): e3002573, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38547237

RESUMO

The rising interest and success in deploying inherited microorganisms and cytoplasmic incompatibility (CI) for vector control strategies necessitate an explanation of the CI mechanism. Wolbachia-induced CI manifests in the form of embryonic lethality when sperm from Wolbachia-bearing testes fertilize eggs from uninfected females. Embryos from infected females however survive to sustain the maternally inherited symbiont. Previously in Drosophila melanogaster flies, we demonstrated that CI modifies chromatin integrity in developing sperm to bestow the embryonic lethality. Here, we validate these findings using wMel-transinfected Aedes aegypti mosquitoes released to control vector-borne diseases. Once again, the prophage WO CI proteins, CifA and CifB, target male gametic nuclei to modify chromatin integrity via an aberrant histone-to-protamine transition. Cifs are not detected in the embryo, and thus elicit CI via the nucleoprotein modifications established pre-fertilization. The rescue protein CifA in oogenesis localizes to stem cell, nurse cell, and oocyte nuclei, as well as embryonic DNA during embryogenesis. Discovery of the nuclear targeting Cifs and altered histone-to-protamine transition in both Aedes aegypti mosquitoes and D. melanogaster flies affirm the Host Modification Model of CI is conserved across these host species. The study also newly uncovers the cell biology of Cif proteins in the ovaries, CifA localization in the embryos, and an impaired histone-to-protamine transition during spermiogenesis of any mosquito species. Overall, these sperm modification findings may enable future optimization of CI efficacy in vectors or pests that are refractory to Wolbachia transinfections.


Assuntos
Aedes , Arbovírus , Wolbachia , Animais , Feminino , Masculino , Drosophila melanogaster/genética , Histonas/genética , Mosquitos Vetores , Sêmen , Drosophila/genética , Cromatina , Protaminas/genética
2.
Science ; 383(6687): 1111-1117, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452081

RESUMO

The extent to which prophage proteins interact with eukaryotic macromolecules is largely unknown. In this work, we show that cytoplasmic incompatibility factor A (CifA) and B (CifB) proteins, encoded by prophage WO of the endosymbiont Wolbachia, alter long noncoding RNA (lncRNA) and DNA during Drosophila sperm development to establish a paternal-effect embryonic lethality known as cytoplasmic incompatibility (CI). CifA is a ribonuclease (RNase) that depletes a spermatocyte lncRNA important for the histone-to-protamine transition of spermiogenesis. Both CifA and CifB are deoxyribonucleases (DNases) that elevate DNA damage in late spermiogenesis. lncRNA knockdown enhances CI, and mutagenesis links lncRNA depletion and subsequent sperm chromatin integrity changes to embryonic DNA damage and CI. Hence, prophage proteins interact with eukaryotic macromolecules during gametogenesis to create a symbiosis that is fundamental to insect evolution and vector control.


Assuntos
Proteínas de Bactérias , Desoxirribonucleases , Drosophila melanogaster , Herança Paterna , Prófagos , RNA Longo não Codificante , Espermatozoides , Proteínas Virais , Wolbachia , Animais , Masculino , Citoplasma/metabolismo , DNA/metabolismo , Prófagos/genética , Prófagos/metabolismo , RNA Longo não Codificante/metabolismo , Espermatozoides/crescimento & desenvolvimento , Espermatozoides/metabolismo , Wolbachia/metabolismo , Wolbachia/virologia , Proteínas Virais/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/microbiologia , Proteínas de Bactérias/metabolismo , Desoxirribonucleases/metabolismo
3.
PLoS Biol ; 21(12): e3002420, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38060452

RESUMO

The Microbiome Sciences are at a crucial maturation stage. Scientists and educators should now view the Microbiome Sciences as a flourishing and autonomous discipline, creating degree programs and departments that are conducive to cohesive growth.


Assuntos
Currículo , Microbiota
4.
PLoS Biol ; 21(8): e3002230, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37590208

RESUMO

Human microbiome variation is linked to the incidence, prevalence, and mortality of many diseases and associates with race and ethnicity in the United States. However, the age at which microbiome variability emerges between these groups remains a central gap in knowledge. Here, we identify that gut microbiome variation associated with race and ethnicity arises after 3 months of age and persists through childhood. One-third of the bacterial taxa that vary across caregiver-identified racial categories in children are taxa reported to also vary between adults. Machine learning modeling of childhood microbiomes from 8 cohort studies (2,756 samples from 729 children) distinguishes racial and ethnic categories with 87% accuracy. Importantly, predictive genera are also among the top 30 most important taxa when childhood microbiomes are used to predict adult self-identified race and ethnicity. Our results highlight a critical developmental window at or shortly after 3 months of age when social and environmental factors drive race and ethnicity-associated microbiome variation and may contribute to adult health and health disparities.


Assuntos
Microbioma Gastrointestinal , Microbiota , Adulto , Criança , Humanos , Etnicidade/genética , Microbiota/genética , Microbioma Gastrointestinal/genética , Conhecimento , Aprendizado de Máquina
5.
Commun Biol ; 5(1): 1401, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36543914

RESUMO

Independent studies demonstrate the significance of gut microbiota on the pathogenesis of chronic lung diseases; yet little is known regarding the role of the gut microbiota in lung fibrosis progression. Here we show, using the bleomycin murine model to quantify lung fibrosis in C57BL/6 J mice housed in germ-free, animal biosafety level 1 (ABSL-1), or animal biosafety level 2 (ABSL-2) environments, that germ-free mice are protected from lung fibrosis, while ABSL-1 and ABSL-2 mice develop mild and severe lung fibrosis, respectively. Metagenomic analysis reveals no notable distinctions between ABSL-1 and ABSL-2 lung microbiota, whereas greater microbial diversity, with increased Bifidobacterium and Lactobacilli, is present in ABSL-1 compared to ABSL-2 gut microbiota. Flow cytometric analysis reveals enhanced IL-6/STAT3/IL-17A signaling in pulmonary CD4 + T cells of ABSL-2 mice. Fecal transplantation of ABSL-2 stool into germ-free mice recapitulated more severe fibrosis than transplantation of ABSL-1 stool. Lactobacilli supernatant reduces collagen 1 A production in IL-17A- and TGFß1-stimulated human lung fibroblasts. These findings support a functional role of the gut microbiota in augmenting lung fibrosis severity.


Assuntos
Lesão Pulmonar Aguda , Microbioma Gastrointestinal , Fibrose Pulmonar , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Interleucina-17 , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibroblastos/metabolismo , Fibroblastos/microbiologia
6.
iScience ; 25(11): 105327, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36304111

RESUMO

Environmental stressors can impact the basic biology and applications of host-microbe symbioses. For example, Wolbachia symbiont densities and cytoplasmic incompatibility (CI) levels can decline in response to extreme temperatures and host aging. To investigate whether transgenic expression of CI-causing cif genes overcomes the environmental sensitivity of CI, we exposed transgenic male flies to low and high temperatures as well as aging treatments. Our results indicate that transgenic cif expression induces nearly complete CI regardless of temperature and aging, despite severe weakening of Wolbachia-based wild-type CI. Strong CI levels correlate with higher levels of cif transgene expression in young males. Altogether, our results highlight that transgenic CI persists against common environmental pressures and may be relevant for future control applications involving the cifA and cifB transgenes.

7.
PLoS Biol ; 20(8): e3001758, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35998206

RESUMO

Many diseases linked with ethnic health disparities associate with changes in microbial communities in the United States, but the causes and persistence of ethnicity-associated microbiome variation are not understood. For instance, microbiome studies that strictly control for diet across ethnically diverse populations are lacking. Here, we performed multiomic profiling over a 9-day period that included a 4-day controlled vegetarian diet intervention in a defined geographic location across 36 healthy Black and White females of similar age, weight, habitual diets, and health status. We demonstrate that individuality and ethnicity account for roughly 70% to 88% and 2% to 10% of taxonomic variation, respectively, eclipsing the effects a short-term diet intervention in shaping gut and oral microbiomes and gut viromes. Persistent variation between ethnicities occurs for microbial and viral taxa and various metagenomic functions, including several gut KEGG orthologs, oral carbohydrate active enzyme categories, cluster of orthologous groups of proteins, and antibiotic-resistant gene categories. In contrast to the gut and oral microbiome data, the urine and plasma metabolites tend to decouple from ethnicity and more strongly associate with diet. These longitudinal, multiomic profiles paired with a dietary intervention illuminate previously unrecognized associations of ethnicity with metagenomic and viromic features across body sites and cohorts within a single geographic location, highlighting the importance of accounting for human microbiome variation in research, health determinants, and eventual therapies. Trial Registration: ClinicalTrials.gov ClinicalTrials.gov Identifier: NCT03314194.


Assuntos
Microbioma Gastrointestinal , Microbiota , Bactérias/genética , Etnicidade , Fezes , Feminino , Microbioma Gastrointestinal/genética , Humanos , Microbiota/genética , Viroma
8.
Proc Natl Acad Sci U S A ; 119(26): e2200551119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35749358

RESUMO

Human genetic variation associates with the composition of the gut microbiome, yet its influence on clinical traits remains largely unknown. We analyzed the consequences of nearly a thousand gut microbiome-associated variants (MAVs) on phenotypes reported in electronic health records from tens of thousands of individuals. We discovered and replicated associations of MAVs with neurological, metabolic, digestive, and circulatory diseases. Five significant MAVs in these categories correlate with the relative abundance of microbes down to the strain level. We also demonstrate that these relationships are independently observed and concordant with microbe by disease associations reported in case-control studies. Moreover, a selective sweep and population differentiation impacted some disease-linked MAVs. Combined, these findings establish triad relationships among the human genome, microbiome, and disease. Consequently, human genetic influences may offer opportunities for precision diagnostics of microbiome-associated diseases but also highlight the relevance of genetic background for microbiome modulation and therapeutics.


Assuntos
Doença , Microbioma Gastrointestinal , Variação Genética , Doença/genética , Genoma Humano , Humanos , Fenômica , Fenótipo
9.
PLoS Genet ; 18(6): e1010227, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35666732

RESUMO

Wolbachia are the most common obligate, intracellular bacteria in animals. They exist worldwide in arthropod and nematode hosts in which they commonly act as reproductive parasites or mutualists, respectively. Bacteriophage WO, the largest of Wolbachia's mobile elements, includes reproductive parasitism genes, serves as a hotspot for genetic divergence and genomic rearrangement of the bacterial chromosome, and uniquely encodes a Eukaryotic Association Module with eukaryotic-like genes and an ensemble of putative host interaction genes. Despite WO's relevance to genome evolution, selfish genetics, and symbiotic applications, relatively little is known about its origin, host range, diversification, and taxonomic classification. Here we analyze the most comprehensive set of 150 Wolbachia and phage WO assemblies to provide a framework for discretely organizing and naming integrated phage WO genomes. We demonstrate that WO is principally in arthropod Wolbachia with relatives in diverse endosymbionts and metagenomes, organized into four variants related by gene synteny, often oriented opposite the putative origin of replication in the Wolbachia chromosome, and the large serine recombinase is an ideal typing tool to distinguish the four variants. We identify a novel, putative lytic cassette and WO's association with a conserved eleven gene island, termed Undecim Cluster, that is enriched with virulence-like genes. Finally, we evaluate WO-like Islands in the Wolbachia genome and discuss a new model in which Octomom, a notable WO-like Island, arose from a split with WO. Together, these findings establish the first comprehensive Linnaean taxonomic classification of endosymbiont phages, including non-Wolbachia phages from aquatic environments, that includes a new family and two new genera to capture the collective relatedness of these viruses.


Assuntos
Artrópodes , Bacteriófagos , Wolbachia , Animais , Bacteriófagos/genética , Eucariotos , Genômica , Simbiose/genética , Wolbachia/genética
10.
PLoS Biol ; 20(5): e3001584, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35609042

RESUMO

Inherited microorganisms can selfishly manipulate host reproduction to drive through populations. In Drosophila melanogaster, germline expression of the native Wolbachia prophage WO proteins CifA and CifB cause cytoplasmic incompatibility (CI) in which embryos from infected males and uninfected females suffer catastrophic mitotic defects and lethality; however, in infected females, CifA expression rescues the embryonic lethality and thus imparts a fitness advantage to the maternally transmitted Wolbachia. Despite widespread relevance to sex determination, evolution, and vector control, the mechanisms underlying when and how CI impairs male reproduction remain unknown and a topic of debate. Here, we use cytochemical, microscopic, and transgenic assays in D. melanogaster to demonstrate that CifA and CifB proteins of wMel localize to nuclear DNA throughout the process of spermatogenesis. Cif proteins cause abnormal histone retention in elongating spermatids and protamine deficiency in mature sperms that travel to the female reproductive tract with Cif proteins. Notably, protamine gene knockouts enhance wild-type CI. In ovaries, CifA localizes to germ cell nuclei and cytoplasm of early-stage egg chambers; however, Cifs are absent in late-stage oocytes and subsequently in fertilized embryos. Finally, CI and rescue are contingent upon a newly annotated CifA bipartite nuclear localization sequence. Together, our results strongly support the Host modification model of CI in which Cifs initially modify the paternal and maternal gametes to bestow CI-defining embryonic lethality and rescue.


Assuntos
Wolbachia , Animais , Citoplasma/metabolismo , Drosophila melanogaster/genética , Feminino , Masculino , Prófagos/genética , Protaminas/metabolismo , Espermatozoides
11.
Elife ; 102021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34677126

RESUMO

Wolbachia are the most widespread bacterial endosymbionts in animals. Within arthropods, these maternally transmitted bacteria can selfishly hijack host reproductive processes to increase the relative fitness of their transmitting females. One such form of reproductive parasitism called male killing, or the selective killing of infected males, is recapitulated to degrees by transgenic expression of the prophage WO-mediated killing (wmk) gene. Here, we characterize the genotype-phenotype landscape of wmk-induced male killing in D. melanogaster using transgenic expression. While phylogenetically distant wmk homologs induce no sex-ratio bias, closely-related homologs exhibit complex phenotypes spanning no death, male death, or death of all hosts. We demonstrate that alternative start codons, synonymous codons, and notably a single synonymous nucleotide in wmk can ablate killing. These findings reveal previously unrecognized features of transgenic wmk-induced killing and establish new hypotheses for the impacts of post-transcriptional processes in male killing variation. We conclude that synonymous sequence changes are not necessarily silent in nested endosymbiotic interactions with life-or-death consequences.


Assuntos
Proteínas de Bactérias/genética , Drosophila melanogaster/microbiologia , Prófagos/genética , Simbiose , Wolbachia/fisiologia , Animais , Proteínas de Bactérias/metabolismo , Masculino , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/fisiologia , Wolbachia/genética
12.
PLoS Biol ; 19(10): e3001417, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34699520

RESUMO

Microbial symbiosis and speciation profoundly shape the composition of life's biodiversity. Despite the enormous contributions of these two fields to the foundations of modern biology, there is a vast and exciting frontier ahead for research, literature, and conferences to address the neglected prospects of merging their study. Here, we survey and synthesize exemplar cases of how endosymbionts and microbial communities affect animal hybridization and vice versa. We conclude that though the number of case studies remain nascent, the wide-ranging types of animals, microbes, and isolation barriers impacted by hybridization will likely prove general and a major new phase of study that includes the microbiome as part of the functional whole contributing to reproductive isolation. Though microorganisms were proposed to impact animal speciation a century ago, the weight of the evidence supporting this view has now reached a tipping point.


Assuntos
Especiação Genética , Interações Hospedeiro-Patógeno/genética , Hibridização Genética , Microbiota , Animais , Genoma
13.
PLoS Negl Trop Dis ; 15(7): e0009637, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34314434

RESUMO

Wolbachia is currently at the forefront of global efforts to control arbovirus transmission from the vector Aedes aegypti. The use of Wolbachia relies on two phenotypes-cytoplasmic incompatibility (CI), conferred by cifA and cifB genes in prophage WO, and Wolbachia-mediated pathogen blocking (WMPB). These traits allow for local, self-sustaining reductions in transmission of dengue (DENV) following release of Wolbachia-infected A. aegypti. Here, aided by previous artificial selection experiment that generated Low and High pathogen blocking lines, we examined the potential link between WMPB and phage WO. We found no evidence that Wolbachia or phage WO relative densities predict DENV blocking strength across selected lines. However, selection resulted in reduced phage WO relative density for the Low WMPB line. The Low blocking line was previously shown to have reduced fitness as a result of selection. Through subsequent genomic analyses, we demonstrate that SNP variation underpinning selection for low blocking led to elevated frequency of potential deleterious SNPs on chromosome 1. The key region on chromosome 1 contains genes relating to cell cycle regulation, oxidative stress, transcriptional pausing, among others, that may have cascading effects on Wolbachia intracellular environment. We hypothesize that reduction in phage WO may be driven by changes in the loci directly under selection for blocking, or by the accumulation of predicted deleterious alleles in linkage disequilibrium with blocking loci resulting from hitchhiking. For the Low line with fewer phage WO, we also detected reduced expression of cifA and cifB CI genes, with patterns of expression varying between somatic and reproductive tissues. In conclusion, we propose that artificial selection for WMPB trait had corresponding impacts on phage WO densities, and also the transcription of CI-causing genes. Future studies may include a more detailed analysis of the regions the A. aegypti chromosome 1's ability to affect WMPB and other Wolbachia-associated intrinsic factors such as phage WO.


Assuntos
Aedes/microbiologia , Bacteriófagos , Vírus da Dengue/fisiologia , Interações Hospedeiro-Patógeno , Prófagos , Wolbachia/fisiologia , Animais , Agentes de Controle Biológico , Mosquitos Vetores , Mutação , Carga Viral
14.
Nutr Metab Cardiovasc Dis ; 31(8): 2436-2448, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34176710

RESUMO

BACKGROUND AND AIMS: The type of fat consumed in animal-based western diets, typically rich in the saturated fat palmitate, has been implicated in cardiometabolic disease risk. In contrast, the most abundant mono- and polyunsaturated fats, more typical in a vegetarian or plant-based diet, potentiate less deleterious effects. This study determined differences in plasma and urine metabolites when switching from omnivorous to vegetarian diet, including metabolites involved in fatty acid utilization. METHODS AND RESULTS: A prospective cohort of 38 European (EA) and African American (AA) omnivorous females were matched by age (25.7 ± 5.3y) and BMI (22.4 ± 1.9 kg/m2). Pre-intervention samples were collected while subjects consumed habitual animal-based diet. Changes in metabolites were assessed by ultra-high-performance liquid chromatography-tandem mass spectroscopy (Metabolon, Inc.) upon completing four days of novel vegetarian diet provided by the Vanderbilt Metabolic Kitchen. Changes in several diet-derived metabolites were observed, including increases in compounds derived from soy food metabolism along with decreases in metabolites of xanthine and histidine. Significant changes occurred in metabolites of saturated, monounsaturated and polyunsaturated fatty acids along with significant differences between EA and AA women in changes in plasma concentrations of acylcarnitines, which reflect the completeness of fatty acid oxidation (versus storage). CONCLUSION: These data suggest improvements in fatty acid metabolism (oxidation vs storage), a key factor in energy homeostasis, may be promoted rapidly by adoption of a vegetarian (plant-based) diet. Mechanistic differences in response to diet interventions must be understood to effectively provide protection against the widespread development of obesity and cardiometabolic disease in population subgroups, such as AA women.


Assuntos
Dieta Saudável/etnologia , Dieta Vegetariana/etnologia , Metabolismo Energético , Ácidos Graxos/metabolismo , População Branca , Adulto , Negro ou Afro-Americano , Biomarcadores/sangue , Biomarcadores/urina , Cromatografia Líquida de Alta Pressão , Ácidos Graxos/sangue , Ácidos Graxos/urina , Comportamento Alimentar/etnologia , Feminino , Humanos , Metaboloma , Metabolômica , Oxirredução , Estudos Prospectivos , Espectrometria de Massas em Tandem , Tennessee , Adulto Jovem
15.
Cell Host Microbe ; 29(6): 879-893, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-33945798

RESUMO

The most widespread intracellular bacteria in the animal kingdom are maternally inherited endosymbionts of the genus Wolbachia. Their prevalence in arthropods and nematodes worldwide and stunning arsenal of parasitic and mutualistic adaptations make these bacteria a biological archetype for basic studies of symbiosis and applied outcomes for curbing human and agricultural diseases. Here, we conduct a summative, centennial analysis of living in the Wolbachia world. We synthesize literature on Wolbachia's host range, phylogenetic diversity, genomics, cell biology, and applications to filarial, arboviral, and agricultural diseases. We also review the mobilome of Wolbachia including phage WO and its essentiality to hallmark reproductive phenotypes in arthropods. Finally, the Wolbachia system is an exemplar for discovery-based science education using biodiversity, biotechnology, and bioinformatics lessons. As we approach a century of Wolbachia research, the interdisciplinary science of this symbiosis stands as a model for consolidating and teaching the integrative rules of endosymbiotic life.


Assuntos
Interações entre Hospedeiro e Microrganismos , Simbiose , Wolbachia/citologia , Wolbachia/fisiologia , Wolbachia/virologia , Animais , Bacteriófagos/fisiologia , Evolução Biológica , Feminização , Especificidade de Hospedeiro , Humanos , Masculino , Fenótipo , Filogenia , Medicina Preventiva
16.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33853946

RESUMO

Animal gastrointestinal tracts harbor a microbiome that is integral to host function, yet species from diverse phyla have evolved a reduced digestive system or lost it completely. Whether such changes are associated with alterations in the diversity and/or abundance of the microbiome remains an untested hypothesis in evolutionary symbiosis. Here, using the life history transition from planktotrophy (feeding) to lecithotrophy (nonfeeding) in the sea urchin Heliocidaris, we demonstrate that the lack of a functional gut corresponds with a reduction in microbial community diversity and abundance as well as the association with a diet-specific microbiome. We also determine that the lecithotroph vertically transmits a Rickettsiales that may complement host nutrition through amino acid biosynthesis and influence host reproduction. Our results indicate that the evolutionary loss of a functional gut correlates with a reduction in the microbiome and the association with an endosymbiont. Symbiotic transitions can therefore accompany life history transitions in the evolution of developmental strategies.


Assuntos
Trato Gastrointestinal/microbiologia , Ouriços-do-Mar/microbiologia , Simbiose/genética , Adaptação Biológica/genética , Animais , Evolução Biológica , Trato Gastrointestinal/fisiologia , Microbiota/genética , Filogenia , RNA Ribossômico 16S/genética , Ouriços-do-Mar/genética
17.
mSystems ; 6(2)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824199

RESUMO

Phylosymbiosis is a cross-system trend whereby microbial community relationships recapitulate the host phylogeny. In Nasonia parasitoid wasps, phylosymbiosis occurs throughout development, is distinguishable between sexes, and benefits host development and survival. Moreover, the microbiome shifts in hybrids as a rare Proteus bacterium in the microbiome becomes dominant. The larval hybrids then catastrophically succumb to bacterium-assisted lethality and reproductive isolation between the species. Two important questions for understanding phylosymbiosis and bacterium-assisted lethality in hybrids are (i) do the Nasonia bacterial genomes differ from other animal isolates and (ii) are the hybrid bacterial genomes the same as those in the parental species? Here, we report the cultivation, whole-genome sequencing, and comparative analyses of the most abundant gut bacteria in Nasonia larvae, Providencia rettgeri and Proteus mirabilis Characterization of new isolates shows Proteus mirabilis forms a more robust biofilm than Providencia rettgeri and that, when grown in coculture, Proteus mirabilis significantly outcompetes Providencia rettgeri Providencia rettgeri genomes from Nasonia are similar to each other and more divergent from pathogenic, human associates. Proteus mirabilis from Nasonia vitripennis, Nasonia giraulti, and their hybrid offspring are nearly identical and relatively distinct from human isolates. These results indicate that members of the larval gut microbiome within Nasonia are most similar to each other, and the strain of the dominant Proteus mirabilis in hybrids is resident in parental species. Holobiont interactions between shared, resident members of the wasp microbiome and the host underpin phylosymbiosis and hybrid breakdown.IMPORTANCE Animal and plant hosts often establish intimate relationships with their microbiomes. In varied environments, closely related host species share more similar microbiomes, a pattern termed phylosymbiosis. When phylosymbiosis is functionally significant and beneficial, microbial transplants between host species and host hybridization can have detrimental consequences on host biology. In the Nasonia parasitoid wasp genus, which contains a phylosymbiotic gut community, both effects occur and provide evidence for selective pressures on the holobiont. Here, we show that bacterial genomes in Nasonia differ from other environments and harbor genes with unique functions that may regulate phylosymbiotic relationships. Furthermore, the bacteria in hybrids are identical to those in parental species, thus supporting a hologenomic tenet that the same members of the microbiome and the host genome impact phylosymbiosis, hybrid breakdown, and speciation.

18.
Genetics ; 217(1): 1-13, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33683351

RESUMO

Wolbachia are maternally transmitted, intracellular bacteria that can often selfishly spread through arthropod populations via cytoplasmic incompatibility (CI). CI manifests as embryonic death when males expressing prophage WO genes cifA and cifB mate with uninfected females or females harboring an incompatible Wolbachia strain. Females with a compatible cifA-expressing strain rescue CI. Thus, cif-mediated CI confers a relative fitness advantage to females transmitting Wolbachia. However, whether cif sequence variation underpins incompatibilities between Wolbachia strains and variation in CI penetrance remains unknown. Here, we engineer Drosophila melanogaster to transgenically express cognate and non-cognate cif homologs and assess their CI and rescue capability. Cognate expression revealed that cifA;B native to D. melanogaster causes strong CI, and cognate cifA;B homologs from two other Drosophila-associated Wolbachia cause weak transgenic CI, including the first demonstration of phylogenetic type 2 cifA;B CI. Intriguingly, non-cognate expression of cifA and cifB alleles from different strains revealed that cifA homologs generally contribute to strong transgenic CI and interchangeable rescue despite their evolutionary divergence, and cifB genetic divergence contributes to weak or no transgenic CI. Finally, we find that a type 1 cifA can rescue CI caused by a genetically divergent type 2 cifA;B in a manner consistent with unidirectional incompatibility. By genetically dissecting individual CI functions for type 1 and 2 cifA and cifB, this work illuminates new relationships between cif genotype and CI phenotype. We discuss the relevance of these findings to CI's genetic basis, phenotypic variation patterns, and mechanism.


Assuntos
Variação Genética , Fenótipo , Prófagos/genética , Proteínas Virais/genética , Animais , Drosophila melanogaster , Feminino , Aptidão Genética , Infertilidade/microbiologia , Masculino , Espermatozoides/microbiologia , Wolbachia/patogenicidade , Wolbachia/virologia
19.
Genetics ; 216(2): 263-268, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33023928

RESUMO

The Elizabeth W. Jones Award for Excellence in Education recognizes an individual who has had a significant impact on genetics education at any education level. Seth R. Bordenstein, Ph.D., Centennial Professor of Biological Sciences at Vanderbilt University and Founding Director of the Vanderbilt Microbiome Initiative, is the 2020 recipient in recognition of his cofounding, developing, and expanding Discover the Microbes Within! The Wolbachia Project.


Assuntos
Ciência do Cidadão/métodos , Genética/educação , Microbiota , Wolbachia/genética , Animais , Distinções e Prêmios , Ciência do Cidadão/organização & administração , Técnicas Genéticas , Genética/organização & administração , Humanos , Wolbachia/patogenicidade
20.
Elife ; 92020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32975515

RESUMO

Cytoplasmic incompatibility (CI) is the most common symbiont-induced reproductive manipulation. Specifically, symbiont-induced sperm modifications cause catastrophic mitotic defects in the fertilized embryo and ensuing lethality in crosses between symbiotic males and either aposymbiotic females or females harboring a different symbiont strain. However, if the female carries the same symbiont strain, then embryos develop properly, thereby imparting a relative fitness benefit to symbiont-transmitting mothers. Thus, CI drives maternally-transmitted bacteria to high frequencies in arthropods worldwide. In the past two decades, CI experienced a boom in interest due to its (i) deployment in worldwide efforts to curb mosquito-borne diseases, (ii) causation by bacteriophage genes, cifA and cifB, that modify sexual reproduction, and (iii) important impacts on arthropod speciation. This review serves as a gateway to experimental, conceptual, and quantitative themes of CI and outlines significant gaps in understanding CI's mechanism that are ripe for investigation from diverse subdisciplines in the life sciences.


Assuntos
Artrópodes/fisiologia , Citoplasma , Reprodução , Simbiose/fisiologia , Animais , Artrópodes/genética , Citoplasma/genética , Citoplasma/metabolismo , Citoplasma/microbiologia , Citoplasma/fisiologia , Feminino , Masculino , Reprodução/genética , Reprodução/fisiologia , Especificidade da Espécie , Ubiquitinas/genética , Ubiquitinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...