Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 110(17): 172701, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679716

RESUMO

Distributions of the largest fragment charge, Zmax, in multifragmentation reactions around the Fermi energy can be decomposed into a sum of a Gaussian and a Gumbel distribution, whereas at much higher or lower energies one or the other distribution is asymptotically dominant. We demonstrate the same generic behavior for the largest cluster size in critical aggregation models for small systems, in or out of equilibrium, around the critical point. By analogy with the time-dependent irreversible aggregation model, we infer that Zmax distributions are characteristic of the multifragmentation time scale, which is largely determined by the onset of radial expansion in this energy range.

2.
Phys Rev Lett ; 104(23): 232701, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20867230

RESUMO

Nuclear stopping has been investigated in central nuclear collisions at intermediate energies by analyzing kinematically complete events recorded with the help of the 4π multidetector INDRA for a large variety of symmetric systems. It is found that the mean isotropy ratio defined as the ratio of transverse to parallel momenta (energies) reaches a minimum near the Fermi energy, saturates or slowly increases depending on the mass of the system as the beam energy increases, and then stays lower than unity, showing that significant stopping is not achieved even for the heavier systems. Close to and above the Fermi energy, experimental data show no effect of the isospin content of the interacting system. A comparison with transport model calculations reveals that the latter overestimates the stopping power at low energies.

3.
Phys Rev Lett ; 105(14): 142701, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21230826

RESUMO

Fragment partitions of fragmenting hot nuclei produced in central and semiperipheral collisions have been compared in the excitation energy region 4-10 MeV per nucleon where radial collective expansion takes place. It is shown that, for a given total excitation energy per nucleon, the amount of radial collective energy fixes the mean fragment multiplicity. It is also shown that, at a given total excitation energy per nucleon, the different properties of fragment partitions are completely determined by the reduced fragment multiplicity (i.e., normalized to the source size). Freeze-out volumes seem to play a role in the scalings observed.

4.
Phys Rev Lett ; 103(7): 072701, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19792638

RESUMO

The charge distribution of the heaviest fragment detected in the decay of quasiprojectiles produced in intermediate energy heavy-ion collisions has been observed to be bimodal. This feature is expected as a generic signal of phase transition in nonextensive systems. In this Letter, we present new analyses of experimental data from Au on Au collisions at 60, 80, and 100 MeV/nucleon showing that bimodality is largely independent of the data selection procedure and of entrance channel effects. An estimate of the latent heat of the transition is extracted.

5.
Phys Rev Lett ; 94(16): 162701, 2005 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-15904219

RESUMO

Isotopic effects in the fragmentation of excited target residues following collisions of 12C on (112,124)Sn at incident energies of 300 and 600 MeV per nucleon were studied with the INDRA 4pi detector. The measured yield ratios for light particles and fragments with atomic number Z < or = 5 obey the exponential law of isotopic scaling. The deduced scaling parameters decrease strongly with increasing centrality to values smaller than 50% of those obtained for the peripheral event groups. Symmetry-term coefficients, deduced from these data within the statistical description of isotopic scaling, are near gamma = 25 MeV for peripheral and gamma < 15 MeV for central collisions.

6.
Phys Rev Lett ; 86(15): 3252-5, 2001 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-11327943

RESUMO

Multifragmentation of a "fused system" was observed for central collisions between 32 MeV/nucleon 129Xe and (nat)Sn. Most of the resulting charged products were well identified due to the high performances of the INDRA 4pi array. Experimental higher-order charge correlations for fragments show a weak but nonambiguous enhancement of events with nearly equal-sized fragments. Supported by dynamical calculations in which spinodal decomposition is simulated, this observed enhancement is interpreted as a "fossil" signal of spinodal instabilities in finite nuclear systems.

7.
Phys Rev Lett ; 86(16): 3514-7, 2001 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-11328011

RESUMO

We discuss the scaling laws of both the charged fragments multiplicity n fluctuations and the charge of the largest fragment Z(max) fluctuations for Xe + Sn collisions in the range of bombarding energies between 25A MeV and 50A MeV. We show at E(lab) > or similar to 32 MeV/A the transition in the fluctuation regime of Z(max) which is compatible with the transition from the ordered to disordered phase of excited nuclear matter. The size (charge) of the largest fragment is closely related to the order parameter characterizing this process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...