Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 8(10): 6836-6851, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29147509

RESUMO

The small pore Cu-CHA zeolite is attracting increasing attention as a versatile platform to design novel single-site catalysts for deNO x applications and for the direct conversion of methane to methanol. Understanding at the atomic scale how the catalyst composition influences the Cu-species formed during thermal activation is a key step to unveil the relevant composition-activity relationships. Herein, we explore by in situ XAS the impact of Cu-CHA catalyst composition on temperature-dependent Cu-speciation and reducibility. Advanced multivariate analysis of in situ XANES in combination with DFT-assisted simulation of XANES spectra and multi-component EXAFS fits as well as in situ FTIR spectroscopy of adsorbed N2 allow us to obtain unprecedented quantitative structural information on the complex dynamics during the speciation of Cu-sites inside the framework of the CHA zeolite.

2.
Faraday Discuss ; 201: 265-286, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28621776

RESUMO

The exceptional thermal and chemical stability of the UiO-66, -67 and -68 classes of isostructural MOFs [J. Am. Chem. Soc., 2008, 130, 13850] makes them ideal materials for functionalization purposes aimed at introducing active centres for potential application in heterogeneous catalysis. We previously demonstrated that a small fraction (up to 10%) of the linkers in the UiO-67 MOF can be replaced by bipyridine-dicarboxylate (bpydc) moieties exhibiting metal-chelating ability and enabling the grafting of Pt(ii) and Pt(iv) ions in the MOF framework [Chem. Mater., 2015, 27, 1042] upon interaction with PtCl2 or PtCl4 precursors. Herein we extend this functionalization approach in two directions. First, we show that by controlling the activation of the UiO-67-Pt we can move from a material hosting isolated Pt(ii) sites anchored to the MOF framework with Pt(ii) exhibiting two coordination vacancies (potentially interesting for C-H bond activation) to the formation of very small Pt nanoparticles hosted inside the MOF cavities (potentially interesting for hydrogenation reactions). The second direction consists of the extension of the approach to the insertion of Cu(ii), obtained via interaction with CuCl2, and exhibiting interesting redox properties. All materials have been characterized by in situ X-ray absorption spectroscopy at the Pt L3- and Cu K-edges.

3.
Phys Chem Chem Phys ; 19(21): 14114-14128, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28524206

RESUMO

Hybrid organic-inorganic SBA-15 silicas functionalized with increasing amounts of amino groups were studied in this work aiming to evaluate the effects of their physico-chemical properties on CO2 capture ability. Three different amino-silane species were used: 3-aminopropyltriethoxysilane (APTS), 3-(2-aminoethyl)aminopropyltrimethoxysilane (EAPTS) and 3-[2-(2-aminoethyl)aminoethyl] aminopropyltrimethoxysilane (PAPTS). More specifically, samples were prepared by using two methods, following a post-synthesis grafting procedure and a one-pot preparation method. Experimental and computational techniques were used to study the structural and textural properties of the obtained samples and their surface species in relation to the adopted preparation method. For the most reactive samples, additional hints on the interactions of organosilane species with the silica surface were obtained by a combination of IR and SS-NMR spectroscopy, with particular emphasis on the effects of the silane chain length on the mobility of the organic species. Advanced complementary solid-state NMR techniques provided deeper information on the interactions of organosilane species with the silica surface. Finally, the amount of CO2 adsorbed was estimated by comparing the classical microcalorimetric analysis method with a new type of screening test, the Zero Length Column analysis, which is able to evaluate small amounts of samples in a very short time and the adsorption properties of the adsorbents. The reactivity of the amino-modified silica samples is deeply influenced by both the preparation route and by the type of organosilane used for the functionalization of the materials. In particular, samples prepared by the post-synthesis grafting procedure and containing higher amount of amino groups in the chain are more reactive, following the order PAPTS > EAPTS > APTS.

4.
Chem Commun (Camb) ; 53(51): 6816-6819, 2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28555237

RESUMO

A variety of synthetic procedures have been used to obtain zeolite ZSM-23 (MTT) catalysts with crystallite sizes ranging from the micrometer to nanometer scale. When the acidic zeolite is used as a catalyst for the methanol to hydrocarbon (MTH) reaction, the catalytic lifetime is dramatically influenced by the crystallite shape and size.

5.
Chem Sci ; 6(1): 548-563, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28936309

RESUMO

Cu-SSZ-13 is a highly active NH3-SCR catalyst for the abatement of harmful nitrogen oxides (NO x , x = 1, 2) from the exhausts of lean-burn engines. The study of Cu-speciation occurring upon thermal dehydration is a key step for the understanding of the enhanced catalytic properties of this material and for identifying the SCR active sites and their redox capability. Herein, we combined FTIR, X-ray absorption (XAS) and emission (XES) spectroscopies with DFT computational analysis to elucidate the nature and location of the most abundant Cu sites in the activated catalyst. Different Cu species have been found to be dominant as a function of the dehydration temperature and conditions. Data analysis revealed that the dehydration process of Cu cations is essentially completed at 250 °C, with the formation of dehydrated [CuOH]+ species hosted in close proximity to 1-Al sites in both d6r and 8r units of the SSZ-13 matrix. These species persist at higher temperatures only if a certain amount of O2 is present in the gas feed, while under inert conditions they undergo virtually total "self-reduction" as a consequence of an OH extra-ligand loss, resulting in bi-coordinated bare Cu+ cations. Synchrotron characterization supported by computational analysis allowed an unprecedented quantitative refinement of the local environment and structural parameters of these Cu(ii) and Cu(i) species.

6.
Dalton Trans ; 39(36): 8437-49, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20717598

RESUMO

The comprehensive understanding of the composition, behaviour and reactivity of a catalyst used inside industrial plants is an extremely hard task that is rarely achieved. It requires the use of different spectroscopic techniques, applied under in situ or in operando conditions, and combined with the investigation of the catalyst activity. Often the operating experimental conditions are different from technique to technique and the different results must be compared with care. In the present contribution, we combined in situ XANES/EXAFS, IR spectroscopy of adsorbed CO, CO chemisorption and catalytic tests performed using a pulse reactor in depletive mode. This multitechnical approach resulted in the understanding of the role that dopants (LiCl, KCl, CsCl, MgCl(2) LaCl(3)) have in the nature, relative fraction, reducibility and dispersion of Cu-phases on CuCl(2)/gamma-Al(2)O(3) catalysts for oxychlorination reaction, a key step of the PVC chemistry. In the undoped catalyst two Cu phases coexist: Cu-aluminate and supported CuCl(2), being the latter the only active one [J. Catal., 2000, 189, 91]. EXAFS and XANES highlighted that all dopants contribute more or less efficiently in increasing the fraction of the active copper species, that reaches a value of almost 100% in the case of MgCl(2) or LaCl(3). EXAFS directly, and IR indirectly, proved that the addition of KCl or CsCl (and less efficiently of LiCl) results in the formation of mixed CuK(x)Cl(2+x) or CuCs(x)Cl(2+x) phases, so altering the chemical nature of the active phase. XANES spectroscopy indicates that addition of MgCl(2) or LaCl(3) does not affect the reducibility by ethylene (under static conditions) of the active CuCl(2) phase and that the reducibilility of the new copper-dopant mixed chloride are in the order CuCl(2) > CuLi(x)Cl(2+x) > CuK(x)Cl(2+x) > CuCs(x)Cl(2+x). However, when reduction is done inside a pulse reactor, a more informative picture comes out. The last technique is able to differentiate all samples, and their ability to be reduced by ethylene resulted in the order: La- > Mg- > Li-doped > undoped > K- > Cs-doped catalyst. To understand this apparent discrepancy the dispersion of the active phase, measured by CO chemisorption, was needed: it has been found that addition of LiCl increases enormously the dispersion of the active phase, LaCl(3) significantly and MgCl(2) barely, while addition of both KCl and CsCl results in a decrease of the surface area of the active phase. The mechanism of the enhancing effect of La and Mg on catalytic activity is still not clear, but it could be associated to the modification that they induce to the support surface: the Cu is so highly dispersed that almost all is in direct contact with support surface. It is finally worth noticing that the previous EXAFS and XANES study allowed us to refer the chemisorption data to the active phase only, while the IR study allowed us to fix the Cu(+)/CO surface stoichiometry. Summarizing the use of a multidisciplinary approach has been the conditio sine qua non (mandatory condition) to understand the complex role that the different additives have on the active phase of the CuCl(2)/gamma-Al(2)O(3) catalysts for ethylene oxychlorination.


Assuntos
Óxido de Alumínio/química , Cobre/química , Etilenos/química , Catálise , Césio/química , Cloretos/química , Cloreto de Lítio/química , Cloreto de Magnésio/química , Oxirredução , Cloreto de Potássio/química , Espectroscopia por Absorção de Raios X
7.
Phys Chem Chem Phys ; 12(21): 5605-18, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20428577

RESUMO

The understanding, at the atomic level, of the role played by additives (dopants or promoters) in the chemistry of an industrial catalyst is a very complex and difficult task. We succeeded in this goal for the ethylene oxychlorination catalyst (CuCl(2)/gamma-Al(2)O(3)), used to produce dichloroethane, a key intermediate of the polyvinyl chloride chemistry (PVC). Among the most used additives for both fluid and fixed beds technologies (LiCl, KCl, CsCl, MgCl(2), LaCl(3), CeCl(4)) we have been able to highlight that KCl, and CsCl, forming in reaction conditions a mixed phase with CuCl(2), strongly modify the catalyst behaviour. In particular, these additives are able to displace the rate determining step from the CuCl oxidation (undoped catalyst) to the CuCl(2) reduction. This results from the decrease of the rate of the latter reaction, thus the overall activity of the system. For all remaining additives the rate determining step remains the CuCl oxidation, as for the undoped catalyst. These results have been obtained coupling the catalyst activity monitored with a pulse reactor working in both non-depletive and depletive modes with time resolved XANES spectroscopy performed under in operando conditions (i.e. coupled with mass spectrometry). Formation of CuK(x)Cl(2+x) and CuCs(x)Cl(2+x) mixed phases has been proved monitoring the Cu(II) d-d transitions with UV-Vis spectrometer and the CO stretching frequency of carbon monoxide adsorbed on reduced catalyst by in situ IR spectroscopy. Finally, of high relevance is the observation that the fully oxidized catalyst is inactive. This unexpected evidence highlight the role of coordinatively unsaturated Cu(I) species in adsorbing ethylene on the catalyst surface indicating that copper, in the working catalyst, exhibits a (I)/(II) mixed valence state.

8.
Phys Chem Chem Phys ; 9(21): 2676-85, 2007 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-17627311

RESUMO

Among microporous systems metal organic frameworks are considered promising materials for molecular adsorption. In this contribution infrared spectroscopy is successfully applied to highlight the positive role played by coordinatively unsaturated Cu2+ ions in HKUST-1, acting as specific interaction sites. A properly activated material, obtained after solvent removal, is characterized by a high fraction of coordinatively unsaturated Cu2+ ions acting as preferential adsorption sites that show specific activities towards some of the most common gaseous species (NO, CO2, CO, N2 and H2). From a temperature dependent IR study, it has been estimated that the H2 adsorption energy is as high as 10 kJ mol(-1). A very complex spectral evolution has been observed upon lowering the temperature. A further peculiarity of this material is the fact that it promotes ortho-para conversion of the adsorbed H2 species.


Assuntos
Dióxido de Carbono/química , Cobre/química , Hidrogênio/química , Óxido Nítrico/química , Nitrogênio/química , Compostos Organometálicos/química , Adsorção , Sensibilidade e Especificidade , Espectrofotometria Infravermelho/métodos , Propriedades de Superfície , Temperatura
9.
J Am Chem Soc ; 129(5): 1203-9, 2007 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-17263402

RESUMO

Gas adsorption experiments have been carried out on a copper benzene tricarboxylate metal-organic framework material, HKUST-1. Hydrogen adsorption at 1 and 10 bar (both 77 K) gives an adsorption capacity of 11.16 mmol H2 per g of HKUST-1 (22.7 mg g(-)1, 2.27 wt %) at 1 bar and 18 mmol per g (36.28 mg g(-)1, 3.6 wt %) at 10 bar. Adsorption of D2 at 1 bar (77 K) is between 1.09 (at 1 bar) and 1.20(at <100 mbar) times the H2 values depending on the pressure, agreeing with the theoretical expectations. Gravimetric adsorption measurements of NO on HKUST-1 at 196 K (1 bar) gives a large adsorption capacity of approximately 9 mmol g(-1), which is significantly greater than any other adsorption capacity reported on a porous solid. At 298 K the adsorption capacity at 1 bar is just over 3 mmol g(-1). Infra red experiments show that the NO binds to the empty copper metal sites in HKUST-1. Chemiluminescence and platelet aggregometry experiments indicate that the amount of NO recovered on exposure of the resulting complex to water is enough to be biologically active, completely inhibiting platelet aggregation in platelet rich plasma.


Assuntos
Biotecnologia , Hidrogênio/química , Manufaturas , Metais/química , Óxido Nítrico/química , Adsorção , Luminescência , Agregação Plaquetária , Porosidade , Espectrofotometria Infravermelho , Estresse Mecânico , Propriedades de Superfície , Temperatura , Termogravimetria , Fatores de Tempo
11.
J Phys Chem B ; 109(31): 15024-31, 2005 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-16852901

RESUMO

This work reports the first complete FTIR characterization of H2, N2 and C2H4 molecular complexes formed on the Cr(II) sites in the Phillips catalyst. The use of a silica aerogel as support for Cr(II) sites, substituting the conventional aerosil material, allowed us to obtain a remarkable increase in the signal-to-noise ratio of the IR spectra of adsorbed species. The improvement is directly related to an increase of the surface area of the support (approximately 700 m2 g(-1)) and to an almost complete absence of scattering [Groppo et al., Chem. Mater. 2005, 17, 2019-2027]. The use of this support and the adoption of suitable experimental conditions results, for the first time, in the clear observation of H2 and N2 adducts formed on two different types of Cr(II) sites, thus yielding important information on the coordinative state of the Cr(II) ions, which well agrees with the evidences provided in the past by other probe molecules. Furthermore, we report the first complete characterization of the C2H4 pi-complexes formed on Cr(II) sites. These results are particularly important in the view of the understanding of the polymerization mechanism, since the C2H4 coordination and the formation of pi-bonded complexes are the first steps of the reaction.

12.
Chem Commun (Camb) ; (20): 2300-1, 2004 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-15489990

RESUMO

UV-Vis DRS and photoluminescence (PL) spectroscopy, combined with excitation selective Raman spectroscopy, allow us to understand the main optical and vibrational properties of a metal-organic MOF-5 framework. A O(2-)Zn(2+)[rightward arrow] O(-)Zn(+) ligand to metal charge transfer transition (LMCT) at 350 nm, testifies that the Zn(4)O(13) cluster behaves as a ZnO quantum dot (QD). The organic part acts as a photon antenna able to efficiently transfer the energy to the inorganic ZnO-like QD part, where an intense emission at 525 nm occurs.

13.
J Am Chem Soc ; 123(46): 11409-19, 2001 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-11707118

RESUMO

A thorough analysis of the vibrational features of the titanium silicalite-1 (TS-1) catalyst is presented, based on quantitative IR measurements, Raman and resonant Raman experiments, quantitative XANES, and quantum chemical calculations on cluster and periodic models. The linear correlation of the intensity of the IR and Raman bands located at 960 and 1125 cm(-1) and the XANES peak at 4967 eV with the amount of tetrahedral Ti are quantitatively demonstrated. Raman and resonant Raman spectra of silicalite and TS-1 with variable Ti content are presented, showing main features at 960 and 1125 cm(-1) associated with titanium insertion into the zeolite framework. The enhancement of the intensity of the 1125 cm(-1) feature and the invariance of the 960 cm(-1) feature in UV-Raman experiments, are discussed in terms of resonant Raman selection rules. Quantum chemical calculations on cluster models Si[OSi(OH)(3)](4) and Ti[OSi(OH)(3)](4) at the B3LYP/6-31G(d) level of theory provide the basis for the assignment of the main vibrational contributions and for the understanding of Raman enhancement. The resonance-enhanced 1125 cm(-1) mode is unambiguously associated with a totally symmetric vibration of the TiO(4) tetrahedron, achieved through in-phase antisymmetric stretching of the four connected Ti-O-Si bridges. This vibration can also be described as a totally symmetric stretching of the four Si-O bonds pointing toward Ti. The resonance enhancement of this feature is explained in terms of the electronic structure of the Ti-containing moiety. Asymmetric stretching modes of TO(4) units show distinct behavior when (i) T is occupied by Si as in perfect silicalite, (ii) T is occupied by Ti as in TS-1, or (iii) the oxygen atom belongs to an OH group, such as in terminal tetrahedra of cluster models and in real defective zeolites. Asymmetric SiO(4) and TiO(4) stretching modes appear above and below 1000 cm(-1), respectively, when they are achieved through antisymmetric stretching of the T-O-Si bridges, and around 800 cm(-1) (in both SiO(4) and TiO(4)) when they involve symmetric stretching of the T-O-Si units. In purely siliceous models, the transparency gap between the main peaks at 800 and 1100 cm(-1) contains only vibrational features associated with terminal Si-OH groups, while in Ti-containing models it contains also the above-mentioned asymmetric TiO(4) modes, which in turn are strongly coupled with Si-OH stretching modes. Calculations on periodic models of silicalite and TS-1 free of OH groups using the QMPOT embedding method correctly reproduce the transparency gap of silicalite and the appearance of asymmetric TiO(4) vibrations at 960 cm(-1) in TS-1. Finally, we demonstrate, for the first time, that the distortion of the tetrahedral symmetry around Ti caused by water adsorption quenches the UV-Raman enhancement of the 1125 cm(-1) band.

14.
J Am Chem Soc ; 123(10): 2204-12, 2001 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-11456866

RESUMO

The first direct evidence that Ti atoms are not equally distributed in the 12 crystallographically independent T sites of the MFI framework is presented on the basis of neutron diffraction data collected at the HRPD instrument of the ISIS pulsed neutron source. We found strong evidence indicating that T6, T7, and T11 are the most populated sites and weak evidence that Ti may be hosted in T10. Ti occupancy can be excluded for sites T1, T2, T4, T5, T9, and T12. The occupancy of the remaining sites is doubtful. Since defective silicalite has been shown to exhibit the same preferential sites (T6, T7, T11, and T10) for Si vacancies, it may be suggested that the incorporation mechanism of the Ti atoms in the MFI framework occurs via the insertion of titanium in the defective sites. This hypothesis implies that titanium has a mineralizing effect on the MFI framework, and it is supported by independent spectroscopic data on both TS-1 and defective silicalite. The results are discussed in comparison with the known substitution mechanisms in the T-sites of MFI-type structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA