Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(9): e2102569120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802443

RESUMO

In the human genome, about 750 genes contain one intron excised by the minor spliceosome. This spliceosome comprises its own set of snRNAs, among which U4atac. Its noncoding gene, RNU4ATAC, has been found mutated in Taybi-Linder (TALS/microcephalic osteodysplastic primordial dwarfism type 1), Roifman (RFMN), and Lowry-Wood (LWS) syndromes. These rare developmental disorders, whose physiopathological mechanisms remain unsolved, associate ante- and post-natal growth retardation, microcephaly, skeletal dysplasia, intellectual disability, retinal dystrophy, and immunodeficiency. Here, we report bi-allelic RNU4ATAC mutations in five patients presenting with traits suggestive of the Joubert syndrome (JBTS), a well-characterized ciliopathy. These patients also present with traits typical of TALS/RFMN/LWS, thus widening the clinical spectrum of RNU4ATAC-associated disorders and indicating ciliary dysfunction as a mechanism downstream of minor splicing defects. Intriguingly, all five patients carry the n.16G>A mutation, in the Stem II domain, either at the homozygous or compound heterozygous state. A gene ontology term enrichment analysis on minor intron-containing genes reveals that the cilium assembly process is over-represented, with no less than 86 cilium-related genes containing at least one minor intron, among which there are 23 ciliopathy-related genes. The link between RNU4ATAC mutations and ciliopathy traits is supported by alterations of primary cilium function in TALS and JBTS-like patient fibroblasts, as well as by u4atac zebrafish model, which exhibits ciliopathy-related phenotypes and ciliary defects. These phenotypes could be rescued by WT but not by pathogenic variants-carrying human U4atac. Altogether, our data indicate that alteration of cilium biogenesis is part of the physiopathological mechanisms of TALS/RFMN/LWS, secondarily to defects of minor intron splicing.


Assuntos
Ciliopatias , Spliceossomos , Feminino , Animais , Humanos , Spliceossomos/genética , RNA Nuclear Pequeno/genética , Peixe-Zebra/genética , Retardo do Crescimento Fetal/genética , Mutação , Ciliopatias/genética
2.
Nucleic Acids Res ; 51(2): 712-727, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36537210

RESUMO

Various genetic diseases associated with microcephaly and developmental defects are due to pathogenic variants in the U4atac small nuclear RNA (snRNA), a component of the minor spliceosome essential for the removal of U12-type introns from eukaryotic mRNAs. While it has been shown that a few RNU4ATAC mutations result in impaired binding of essential protein components, the molecular defects of the vast majority of variants are still unknown. Here, we used lymphoblastoid cells derived from RNU4ATAC compound heterozygous (g.108_126del;g.111G>A) twin patients with MOPD1 phenotypes to analyze the molecular consequences of the mutations on small nuclear ribonucleoproteins (snRNPs) formation and on splicing. We found that the U4atac108_126del mutant is unstable and that the U4atac111G>A mutant as well as the minor di- and tri-snRNPs are present at reduced levels. Our results also reveal the existence of 3'-extended snRNA transcripts in patients' cells. Moreover, we show that the mutant cells have alterations in splicing of INTS7 and INTS10 minor introns, contain lower levels of the INTS7 and INTS10 proteins and display changes in the assembly of Integrator subunits. Altogether, our results show that compound heterozygous g.108_126del;g.111G>A mutations induce splicing defects and affect the homeostasis and function of the Integrator complex.


Assuntos
Ribonucleoproteínas Nucleares Pequenas , Spliceossomos , Spliceossomos/genética , Spliceossomos/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Mutação , Íntrons/genética , Splicing de RNA/genética , RNA Nuclear Pequeno/metabolismo , Homeostase/genética
3.
RNA ; 28(3): 303-319, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34893560

RESUMO

Spinal muscular atrophy (SMA) is a devastating neurodegenerative disease caused by reduced amounts of the ubiquitously expressed Survival of Motor Neuron (SMN) protein. In agreement with its crucial role in the biogenesis of spliceosomal snRNPs, SMN-deficiency is correlated to numerous splicing alterations in patient cells and various tissues of SMA mouse models. Among the snRNPs whose assembly is impacted by SMN-deficiency, those involved in the minor spliceosome are particularly affected. Importantly, splicing of several, but not all U12-dependent introns has been shown to be affected in different SMA models. Here, we have investigated the molecular determinants of this differential splicing in spinal cords from SMA mice. We show that the branchpoint sequence (BPS) is a key element controlling splicing efficiency of minor introns. Unexpectedly, splicing of several minor introns with suboptimal BPS is not affected in SMA mice. Using in vitro splicing experiments and oligonucleotides targeting minor or major snRNAs, we show for the first time that splicing of these introns involves both the minor and major machineries. Our results strongly suggest that splicing of a subset of minor introns is not affected in SMA mice because components of the major spliceosome compensate for the loss of minor splicing activity.


Assuntos
Atrofia Muscular Espinal/genética , Splicing de RNA , Spliceossomos/metabolismo , Animais , Células HeLa , Humanos , Íntrons , Camundongos , Atrofia Muscular Espinal/metabolismo , Sítios de Splice de RNA , Ribonucleoproteínas Nucleares Pequenas/metabolismo
4.
Nucleic Acids Res ; 49(13): 7207-7223, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-33754639

RESUMO

The macromolecular SMN complex facilitates the formation of Sm-class ribonucleoproteins involved in mRNA processing (UsnRNPs). While biochemical studies have revealed key activities of the SMN complex, its structural investigation is lagging behind. Here we report on the identification and structural determination of the SMN complex from the lower eukaryote Schizosaccharomyces pombe, consisting of SMN, Gemin2, 6, 7, 8 and Sm proteins. The core of the SMN complex is formed by several copies of SMN tethered through its C-terminal alpha-helices arranged with alternating polarity. This creates a central platform onto which Gemin8 binds and recruits Gemins 6 and 7. The N-terminal parts of the SMN molecules extrude via flexible linkers from the core and enable binding of Gemin2 and Sm proteins. Our data identify the SMN complex as a multivalent hub where Sm proteins are collected in its periphery to allow their joining with UsnRNA.


Assuntos
Proteínas do Complexo SMN/química , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Transporte/química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Atrofia Muscular Espinal/genética , Mutação , Proteínas Nucleares/química , Ligação Proteica , Proteínas do Complexo SMN/metabolismo , Espalhamento a Baixo Ângulo , Proteínas de Schizosaccharomyces pombe/metabolismo , Homologia Estrutural de Proteína , Difração de Raios X
5.
iScience ; 23(1): 100809, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31927482

RESUMO

Spinal muscular atrophy (SMA) is a devastating motor neuron disorder caused by mutations in the survival motor neuron (SMN) gene. It remains unclear how SMN deficiency leads to the loss of motor neurons. By screening Schizosaccharomyces pombe, we found that the growth defect of an SMN mutant can be alleviated by deletion of the actin-capping protein subunit gene acp1+. We show that SMN mutated cells have splicing defects in the profilin gene, which thus directly hinder actin cytoskeleton homeostasis including endocytosis and cytokinesis. We conclude that deletion of acp1+ in an SMN mutant background compensates for actin cytoskeleton alterations by restoring redistribution of actin monomers between different types of cellular actin networks. Our data reveal a direct correlation between an impaired function of SMN in snRNP assembly and defects in actin dynamics. They also point to important common features in the pathogenic mechanism of SMA and ALS.

6.
Sci Rep ; 9(1): 18666, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822699

RESUMO

The predominant motor neuron disease in infants and adults is spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS), respectively. SMA is caused by insufficient levels of the Survival Motor Neuron (SMN) protein, which operates as part of the multiprotein SMN complex that includes the DEAD-box RNA helicase Gemin3/DDX20/DP103. C9orf72, SOD1, TDP-43 and FUS are ranked as the four major genes causing familial ALS. Accumulating evidence has revealed a surprising molecular overlap between SMA and ALS. Here, we ask the question of whether Drosophila can also be exploited to study shared pathogenic pathways. Focusing on motor behaviour, muscle mass and survival, we show that disruption of either TBPH/TDP-43 or Caz/FUS enhance defects associated with Gemin3 loss-of-function. Gemin3-associated neuromuscular junction overgrowth was however suppressed. Sod1 depletion had a modifying effect in late adulthood. We also show that Gemin3 self-interacts and Gem3ΔN, a helicase domain deletion mutant, retains the ability to interact with its wild-type counterpart. Importantly, mutant:wild-type dimers are favoured more than wild-type:wild-type dimers. In addition to reinforcing the link between SMA and ALS, further exploration of mechanistic overlaps is now possible in a genetically tractable model organism. Notably, Gemin3 can be elevated to a candidate for modifying motor neuron degeneration.


Assuntos
RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Ligação a RNA/metabolismo , Superóxido Dismutase/metabolismo , Fator de Transcrição TFIID/metabolismo , Alelos , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , RNA Helicases DEAD-box/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Voo Animal , Genótipo , Humanos , Masculino , Fenótipo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Superóxido Dismutase/genética , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Fator de Transcrição TFIID/genética
7.
FEBS Lett ; 591(21): 3600-3614, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28949413

RESUMO

The Spinal Muscular Atrophy disease protein Survival Motor Neuron (SMN) operates as part of a multiprotein complex whose components also include Gemins 2-8 and Unrip. The fruit fly Drosophila melanogaster is thought to have a slightly smaller SMN complex comprised of SMN, Gemin2/3/5 and, possibly, Unrip. Based upon in vivo interaction methods, we have identified novel interacting partners of the Drosophila SMN complex with homologies to Gemin4/6/7/8. The Gemin4 and Gemin8 orthologues are required for neuromuscular function and survival. The Gemin6/7/Unrip module can be recruited via the SMN-associated Gemin8, hence mirroring the human SMN complex architecture. Our findings lead us to propose that an elaborate SMN complex that is typical in metazoans is also present in Drosophila.


Assuntos
Proteínas do Complexo SMN/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas do Complexo SMN/genética
8.
RNA ; 23(6): 899-909, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28258160

RESUMO

Spinal muscular atrophy (SMA) is caused by mutations and/or deletions of the survival motor neuron gene (SMN1). Besides its function in the biogenesis of spliceosomal snRNPs, SMN might possess a motor neuron specific role and could function in the transport of axonal mRNAs and in the modulation of local protein translation. Accordingly, SMN colocalizes with axonal mRNAs of differentiated NSC-34 motor neuron-like cells. We recently showed that SMN depletion gives rise to a decrease in the axonal transport of the mRNAs encoding Annexin A2 (Anxa2). In this work, we have characterized the structural features of the Anxa2 mRNA required for its axonal targeting by SMN. We found that a G-rich motif located near the 3'UTR is essential for axonal localization of the Anxa2 transcript. We also show that mutations in the motif sequence abolish targeting of Anxa2 reporter mRNAs in axon-like structures of differentiated NSC-34 cells. Finally, localization of both wild-type and mutated Anxa2 reporters is restricted to the cell body in SMN-depleted cells. Altogether, our studies show that this G-motif represents a novel and essential determinant for axonal localization of the Anxa2 mRNA mediated by the SMN complex.


Assuntos
Anexina A2/genética , Anexina A2/metabolismo , Axônios/metabolismo , Motivos de Nucleotídeos , RNA Mensageiro , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Regiões 3' não Traduzidas , Animais , Anexina A2/química , Sequência de Bases , Linhagem Celular , Quadruplex G , Expressão Gênica , Genes Reporter , Humanos , Camundongos , Neurônios Motores/metabolismo , Ligação Proteica , Transporte Proteico , Transporte de RNA
9.
Elife ; 52016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27894420

RESUMO

The multi-domain splicing factor RBM5 regulates the balance between antagonistic isoforms of the apoptosis-control genes FAS/CD95, Caspase-2 and AID. An OCRE (OCtamer REpeat of aromatic residues) domain found in RBM5 is important for alternative splicing regulation and mediates interactions with components of the U4/U6.U5 tri-snRNP. We show that the RBM5 OCRE domain adopts a unique ß-sheet fold. NMR and biochemical experiments demonstrate that the OCRE domain directly binds to the proline-rich C-terminal tail of the essential snRNP core proteins SmN/B/B'. The NMR structure of an OCRE-SmN peptide complex reveals a specific recognition of poly-proline helical motifs in SmN/B/B'. Mutation of conserved aromatic residues impairs binding to the Sm proteins in vitro and compromises RBM5-mediated alternative splicing regulation of FAS/CD95. Thus, RBM5 OCRE represents a poly-proline recognition domain that mediates critical interactions with the C-terminal tail of the spliceosomal SmN/B/B' proteins in FAS/CD95 alternative splicing regulation.


Assuntos
Regulação da Expressão Gênica , Splicing de RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas Centrais de snRNP/química , Proteínas Centrais de snRNP/metabolismo , Substituição de Aminoácidos , Análise Mutacional de DNA , Espectroscopia de Ressonância Magnética , Prolina/metabolismo , Ligação Proteica , Conformação Proteica em Folha beta , Proteínas de Ligação a RNA/genética , Volvocida/enzimologia , Volvocida/metabolismo , Receptor fas/metabolismo
10.
Neurobiol Dis ; 94: 245-58, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27388936

RESUMO

The neuromuscular disorder, spinal muscular atrophy (SMA), results from insufficient levels of the survival motor neuron (SMN) protein. Together with Gemins 2-8 and Unrip, SMN forms the large macromolecular SMN-Gemins complex, which is known to be indispensable for chaperoning the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). It remains unclear whether disruption of this function is responsible for the selective neuromuscular degeneration in SMA. In the present study, we first show that loss of wmd, the Drosophila Unrip orthologue, has a negative impact on the motor system. However, due to lack of a functional relationship between wmd/Unrip and Gemin3, it is likely that Unrip joined the SMN-Gemins complex only recently in evolution. Second, we uncover that disruption of either Tgs1 or pICln, two cardinal players in snRNP biogenesis, results in viability and motor phenotypes that closely resemble those previously uncovered on loss of the constituent members of the SMN-Gemins complex. Interestingly, overexpression of both factors leads to motor dysfunction in Drosophila, a situation analogous to that of Gemin2. Toxicity is conserved in the yeast S. pombe where pICln overexpression induces a surplus of Sm proteins in the cytoplasm, indicating that a block in snRNP biogenesis is partly responsible for this phenotype. Importantly, we show a strong functional relationship and a physical interaction between Gemin3 and either Tgs1 or pICln. We propose that snRNP biogenesis is the pathway connecting the SMN-Gemins complex to a functional neuromuscular system, and its disturbance most likely leads to the motor dysfunction that is typical in SMA.


Assuntos
Proteínas de Drosophila/metabolismo , Neurônios Motores/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN/metabolismo , Animais , Citoplasma/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Fenótipo
11.
PLoS One ; 10(6): e0130974, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26098872

RESUMO

The SMN-Gemins complex is composed of Gemins 2-8, Unrip and the survival motor neuron (SMN) protein. Limiting levels of SMN result in the neuromuscular disorder, spinal muscular atrophy (SMA), which is presently untreatable. The most-documented function of the SMN-Gemins complex concerns the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). Despite multiple genetic studies, the Gemin proteins have not been identified as prominent modifiers of SMN-associated mutant phenotypes. In the present report, we make use of the Drosophila model organism to investigate whether viability and motor phenotypes associated with a hypomorphic Gemin3 mutant are enhanced by changes in the levels of SMN, Gemin2 and Gemin5 brought about by various genetic manipulations. We show a modifier effect by all three members of the minimalistic fly SMN-Gemins complex within the muscle compartment of the motor unit. Interestingly, muscle-specific overexpression of Gemin2 was by itself sufficient to depress normal motor function and its enhanced upregulation in all tissues leads to a decline in fly viability. The toxicity associated with increased Gemin2 levels is conserved in the yeast S. pombe in which we find that the cytoplasmic retention of Sm proteins, likely reflecting a block in the snRNP assembly pathway, is a contributing factor. We propose that a disruption in the normal stoichiometry of the SMN-Gemins complex depresses its function with consequences that are detrimental to the motor system.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA/genética , Proteínas do Complexo SMN/genética , Animais , Citoplasma/genética , Neurônios Motores/metabolismo , Músculos/metabolismo , Atrofia Muscular Espinal/genética , Mutação/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Schizosaccharomyces/genética , Spliceossomos/genética , Regulação para Cima/genética
12.
Mol Cell Biol ; 34(4): 595-605, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24298023

RESUMO

During the early steps of snRNP biogenesis, the survival motor neuron (SMN) complex acts together with the methylosome, an entity formed by the pICln protein, WD45, and the PRMT5 methyltransferase. To expand our understanding of the functional relationship between pICln and SMN in vivo, we performed a genetic analysis of an uncharacterized Schizosaccharomyces pombe pICln homolog. Although not essential, the S. pombe ICln (SpICln) protein is important for optimal yeast cell growth. The human ICLN gene complements the Δicln slow-growth phenotype, demonstrating that the identified SpICln sequence is the bona fide human homolog. Consistent with the role of human pICln inferred from in vitro experiments, we found that the SpICln protein is required for optimal production of the spliceosomal snRNPs and for efficient splicing in vivo. Genetic interaction approaches further demonstrate that modulation of ICln activity is unable to compensate for growth defects of SMN-deficient cells. Using a genome-wide approach and reverse transcription (RT)-PCR validation tests, we also show that splicing is differentially altered in Δicln cells. Our data are consistent with the notion that splice site selection and spliceosome kinetics are highly dependent on the concentration of core spliceosomal components.


Assuntos
Canais Iônicos/genética , Neurônios Motores/metabolismo , Splicing de RNA/genética , Schizosaccharomyces/genética , Spliceossomos/genética , Citoplasma/genética , Citoplasma/metabolismo , Humanos , Canais Iônicos/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Ligação Proteica/genética , Proteínas Metiltransferases/genética , Proteínas Metiltransferases/metabolismo , Schizosaccharomyces/metabolismo , Spliceossomos/metabolismo
13.
RNA ; 19(12): 1755-66, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24152552

RESUMO

Spinal muscular atrophy is a neuromuscular disease resulting from mutations in the SMN1 gene, which encodes the survival motor neuron (SMN) protein. SMN is part of a large complex that is essential for the biogenesis of spliceosomal small nuclear RNPs. SMN also colocalizes with mRNAs in granules that are actively transported in neuronal processes, supporting the hypothesis that SMN is involved in axonal trafficking of mRNPs. Here, we have performed a genome-wide analysis of RNAs present in complexes containing the SMN protein and identified more than 200 mRNAs associated with SMN in differentiated NSC-34 motor neuron-like cells. Remarkably, ~30% are described to localize in axons of different neuron types. In situ hybridization and immuno-fluorescence experiments performed on several candidates indicate that these mRNAs colocalize with the SMN protein in neurites and axons of differentiated NSC-34 cells. Moreover, they localize in cell processes in an SMN-dependent manner. Thus, low SMN levels might result in localization deficiencies of mRNAs required for axonogenesis.


Assuntos
Neuritos/metabolismo , RNA Mensageiro/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Animais , Anexina A2/genética , Anexina A2/metabolismo , Linhagem Celular , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Técnicas de Silenciamento de Genes , Genoma , Camundongos , Neurônios Motores/metabolismo , Junção Neuromuscular/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Transporte de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Selenoproteína W/genética , Selenoproteína W/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética
14.
Nucleic Acids Res ; 41(2): 1255-72, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23221635

RESUMO

Spinal muscular atrophy is a severe motor neuron disease caused by reduced levels of the ubiquitous Survival of MotoNeurons (SMN) protein. SMN is part of a complex that is essential for spliceosomal UsnRNP biogenesis. Signal recognition particle (SRP) is a ribonucleoprotein particle crucial for co-translational targeting of secretory and membrane proteins to the endoplasmic reticulum. SRP biogenesis is a nucleo-cytoplasmic multistep process in which the protein components, except SRP54, assemble with 7S RNA in the nucleolus. Then, SRP54 is incorporated after export of the pre-particle into the cytoplasm. The assembly factors necessary for SRP biogenesis remain to be identified. Here, we show that 7S RNA binds to purified SMN complexes in vitro and that SMN complexes associate with SRP in cellular extracts. We identified the RNA determinants required. Moreover, we report a specific reduction of 7S RNA levels in the spinal cord of SMN-deficient mice, and in a Schizosaccharomyces pombe strain carrying a temperature-degron allele of SMN. Additionally, microinjected antibodies directed against SMN or Gemin2 interfere with the association of SRP54 with 7S RNA in Xenopus laevis oocytes. Our data show that reduced levels of the SMN protein lead to defect in SRP steady-state level and describe the SMN complex as the first identified cellular factor required for SRP biogenesis.


Assuntos
RNA Citoplasmático Pequeno/metabolismo , Proteínas do Complexo SMN/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Alelos , Animais , Anticorpos/farmacologia , Sequência de Bases , Citoplasma/metabolismo , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Atrofia Muscular Espinal/metabolismo , Mutação , RNA Citoplasmático Pequeno/química , RNA Nuclear Pequeno/metabolismo , Proteínas do Complexo SMN/antagonistas & inibidores , Proteínas do Complexo SMN/imunologia , Schizosaccharomyces/genética , Partícula de Reconhecimento de Sinal/química , Medula Espinal/metabolismo , Xenopus laevis
15.
RNA ; 18(1): 31-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22124016

RESUMO

The survival of motor neuron (SMN) protein plays an important role in the biogenesis of spliceosomal snRNPs and is one factor required for the integrity of nuclear Cajal bodies (CBs). CBs are enriched in small CB-specific (sca) RNAs, which guide the formation of pseudouridylated and 2'-O-methylated residues in the snRNAs. Because SMN-deficient cells lack typical CBs, we asked whether the modification of internal residues of major and minor snRNAs is defective in these cells. We mapped modified nucleotides in the major U2 and the minor U4atac and U12 snRNAs. Using both radioactive and fluorescent primer extension approaches, we found that modification of major and minor spliceosomal snRNAs is normal in SMN-deficient cells. Our experiments also revealed a previously undetected pseudouridine at position 60 in human U2 and 2'-O-methylation of A1, A2, and G19 in human U4atac. These results confirm, and extend to minor snRNAs, previous experiments showing that scaRNPs can function in the absence of typical CBs. Furthermore, they show that the differential splicing defects in SMN-deficient cells are not due to failure of post-transcriptional modification of either major or minor snRNAs.


Assuntos
Processamento Pós-Transcricional do RNA/genética , RNA Nuclear Pequeno/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Corpos Enovelados/química , Corpos Enovelados/metabolismo , Células HeLa , Humanos , Metilação , RNA Nuclear Pequeno/química , Spliceossomos/genética , Spliceossomos/metabolismo
16.
EMBO J ; 30(11): 2205-18, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21522132

RESUMO

Transport of C/D snoRNPs to nucleoli involves nuclear export factors. In particular, CRM1 binds nascent snoRNPs, but its precise role remains unknown. We show here that both CRM1 and nucleocytoplasmic trafficking are required to transport snoRNPs to nucleoli, but the snoRNPs do not transit through the cytoplasm. Instead, CRM1 controls the composition of nucleoplasmic pre-snoRNP complexes. We observed that Tgs1 long form (Tgs1 LF), the long isoform of the cap hypermethylase, contains a leucine-rich nuclear export signal, shuttles in a CRM1-dependent manner, and binds to the nucleolar localization signal (NoLS) of the core snoRNP protein Nop58. In vitro data indicate that CRM1 binds Tgs1 LF and promotes its dissociation from Nop58 NoLS, and immunoprecipitation experiments from cells indicate that the association of Tgs1 LF with snoRNPs increases upon CRM1 inhibition. Thus, CRM1 appears to promote nucleolar transport of snoRNPs by removing Tgs1 LF from the Nop58 NoLS. Microarray/IP data show that this occurs on most snoRNPs, from both C/D and H/ACA families, and on the telomerase RNA. Hence, CRM1 provides a general molecular link between nuclear events and nucleocytoplasmic trafficking.


Assuntos
Núcleo Celular/metabolismo , Carioferinas/metabolismo , RNA Nucleolar Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Transporte Ativo do Núcleo Celular , Linhagem Celular , Humanos , Metiltransferases/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteína Exportina 1
17.
Hum Mol Genet ; 20(4): 641-8, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21098506

RESUMO

The survival of motor neuron (SMN) protein is essential for cytoplasmic assembly of spliceosomal snRNPs. Although the normal proportion of endogenous snRNAs is unevenly altered in spinal muscular atrophy (SMA) tissues, the biogenesis of individual snRNPs is not dramatically affected in SMN-deficient cells. The SMN protein is also required for normal Cajal body (CB) formation, but the functional consequences of CB disruption upon SMN deficiency have not yet been analyzed at the level of macromolecular snRNPs assembly. Here, we show that the SMN protein is required for tri-snRNPs formation and that the level of the minor U4atac/U6atac/U5 tri-snRNPs is dramatically decreased in lymphoblasts derived from a patient suffering from a severe form of SMA. We found also that splicing of some, but not all, minor introns is inhibited in these cells, demonstrating links between SMN deficiency and differential alterations of splicing events mediated by the minor spliceosome. Our results suggest that SMA might result from the inefficient splicing of one or only a few pre-mRNAs carrying minor introns and coding for proteins required for motor neurons function and/or organization.


Assuntos
Íntrons/genética , Linfócitos/patologia , Splicing de RNA/genética , RNA Nuclear Pequeno/genética , Ribonucleoproteínas Nucleares Pequenas , Atrofias Musculares Espinais da Infância/patologia , Spliceossomos/patologia , Sobrevivência Celular/genética , Corpos Enovelados/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Atrofias Musculares Espinais da Infância/genética
18.
EMBO J ; 29(11): 1817-29, 2010 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-20400941

RESUMO

Spinal muscular atrophy results from deletions or mutations in the survival of motor neuron (SMN1) gene. The SMN protein has an essential role in the biogenesis of spliceosomal snRNPs, but the link between a defect in this process and specific splicing inhibition of pre-mRNAs has not been established. In this study, we report the construction of a temperature-degron (td) allele of the Schizosaccharomyces pombe SMN protein and show that its depletion at 37 degrees C affects splicing and formation of U1, U2, U4 and U5 snRNPs, but not of U6 and U3 ribonucleoproteins. The function of the tdSMN allele in snRNP assembly is already perturbed at 25 degrees C, suggesting a deleterious effect of the tag at this temperature. Using a genome-wide approach, we report that introns react unequally to lower levels of snRNPs in tdSMN cells and that increasing the length of the polypyrimidine tract can improve the splicing efficiency of some, but not all, affected introns. Altogether, our results suggest that the defects observed in tdSMN fission yeast cells mimic splicing deficits observed in SMN-deficient metazoan cells.


Assuntos
Genes Fúngicos , Precursores de RNA/metabolismo , Splicing de RNA , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Spliceossomos/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Alelos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Humanos , Íntrons , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Mutação , Precursores de RNA/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Spliceossomos/genética , Proteínas Centrais de snRNP
19.
J Neurosci ; 28(51): 13793-804, 2008 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-19091970

RESUMO

Intracellular mRNA transport and local translation play a key role in neuronal physiology. Translationally repressed mRNAs are transported as a part of ribonucleoprotein (RNP) particles to distant dendritic sites, but the properties of different RNP particles and mechanisms of their repression and transport remain largely unknown. Here, we describe a new class of RNP-particles, the dendritic P-body-like structures (dlPbodies), which are present in the soma and dendrites of mammalian neurons and have both similarities and differences to P-bodies of non-neuronal cells. These structures stain positively for a number of P-body and microRNP components, a microRNA-repressed mRNA and some translational repressors. They appear more heterogeneous than P-bodies of HeLa cells, and they rarely contain the exonuclease Xrn1 but are positive for rRNA. These particles show motorized movements along dendrites and relocalize to distant sites in response to synaptic activation. Furthermore, Dcp1a is stably associated with dlP-bodies in unstimulated cells, but exchanges rapidly on neuronal activation, concomitantly with the loss of Ago2 from dlP-bodies. Thus, dlP-bodies may regulate local translation by storing repressed mRNPs in unstimulated cells, and releasing them on synaptic activation.


Assuntos
Dendritos/fisiologia , Dendritos/ultraestrutura , MicroRNAs/metabolismo , Neurônios/ultraestrutura , Ribonucleoproteínas/fisiologia , Animais , Proteínas Argonautas , Transporte Biológico/fisiologia , Células Cultivadas , Dendritos/efeitos dos fármacos , Endorribonucleases/genética , Fator de Iniciação 2 em Eucariotos/genética , Agonistas de Aminoácidos Excitatórios/farmacologia , Proteínas de Fluorescência Verde/genética , Células HeLa , Hipocampo/citologia , Humanos , Hipotálamo/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Tamanho da Partícula , RNA Ribossômico/metabolismo , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Transativadores/genética , Transfecção
20.
J Biol Chem ; 283(4): 2060-9, 2008 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-18039666

RESUMO

Tgs1 is the hypermethylase responsible for m(3)G cap formation of U small nuclear RNAs (U snRNAs) and small nucleolar RNAs (snoRNAs). In vertebrates, hypermethylation of snRNAs occurs in the cytoplasm, whereas this process takes place in the nucleus for snoRNAs. Accordingly, the hypermethylase is found in both compartments with a diffuse localization in the cytoplasm and a concentration in Cajal bodies in the nucleoplasm. In this study, we report that the Tgs1 hypermethylase exists as two species, a full-length cytoplasmic isoform and a shorter nuclear isoform of 65-70 kDa. The short isoform exhibits methyltransferase activity and associates with components of box C/D and H/ACA snoRNPs, pointing to a role of this isoform in hypermethylation of snoRNAs. We also show that production of the short Tgs1 isoform is inhibited by MG132, suggesting that it results from proteasomal limited processing of the full-length Tgs1 protein. Together, our results suggest that proteasome maturation constitutes a mechanism regulating Tgs1 function by generating Tgs1 species with different substrate specificities, subcellular localizations, and functions.


Assuntos
Núcleo Celular/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Capuzes de RNA/metabolismo , Processamento Pós-Transcricional do RNA/fisiologia , RNA Nuclear Pequeno/metabolismo , tRNA Metiltransferases/metabolismo , Antineoplásicos/farmacologia , Núcleo Celular/genética , Citoplasma/enzimologia , Citoplasma/genética , Células HeLa , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Leupeptinas/farmacologia , Metilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/genética , Capuzes de RNA/genética , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , RNA Nuclear Pequeno/genética , tRNA Metiltransferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...