Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(49): 58301-58308, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34851625

RESUMO

Methylammonium lead tribromide (MAPbBr3) perovskite single crystals demonstrate to be excellent direct X-ray and gamma-ray detectors with outstanding sensitivity and low limit of detection. Despite this, thorough studies on the photophysical effects of exposure to high doses of ionizing radiation on this material are still lacking. In this work, we present our findings regarding the effects of controlled X-ray irradiation on the optoelectronic properties of MAPbBr3 single crystals. Irradiation is carried out in air with an imaging X-ray tube, simulating real-life application in a medical facility. By means of surface photovoltage spectroscopy, we find that X-ray exposure quenches free excitons in the material and introduces new bound excitonic species. Despite this drastic effect, the crystals recover after 1 week of storage in dark and low humidity conditions. By means of X-ray photoelectron spectroscopy, we find that the origin of the new bound excitonic species is the formation of bromine vacancies, leading to local changes in the dielectric response of the material. The recovery effect is attributed to vacancy filling by atmospheric oxygen and water.

2.
J Phys Chem C Nanomater Interfaces ; 124(30): 16577-16585, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-33643515

RESUMO

We present a combined experimental and computational study of the effect of charge doping in the osmium based double perovskite Ba2Na1-x Ca x OsO6 for 0 ≤ x ≤ 1 in order to provide a structural and electronic basis for understanding this complex Dirac-Mott insulator material. Specifically, we investigate the effects of the substitution of monovalent Na with divalent Ca, a form of charge doping or alloying that nominally tunes the system from Os7+ with a 5d1 configuration to Os6+ with 5d2 configuration. After an X-ray diffraction characterization, the local atomic and electronic structure has been experimentally probed by X-ray absorption fine structure at all the cation absorption edges at room temperature; the simulations have been performed using ab initio density functional methods. We find that the substitution of Na by Ca induces a linear volume expansion of the crystal structure which indicates an effective alloying due to the substitution process in the whole doping range. The local structure corresponds to the expected double perovskite one with rock-salt arrangement of Na/Ca in the B site and Os in the B' one for all the compositions. X-ray absorption near edge structure measurements show a smooth decrease of the oxidation state of Os from 7+ (5d1) to 6+ (5d2) with increasing Ca concentration, while the oxidation states of Ba, Na, and Ca are constant. This indicates that the substitution of Na by Ca gives rise to an effective electron transfer from the B to the B' site. The comparison between X-ray absorption measurements and ab initio simulations reveals that the expansion of the Os-O bond length induces a reduction of the crystal field splitting of unoccupied Os derived d states.

3.
J Nanosci Nanotechnol ; 19(8): 4980-4986, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913810

RESUMO

Cobalt ferrite nanoparticles have been attracting considerable interest in the recent years because of the large number of potential applications, including magnetic storage, magnetic fluid hyperthermia and as contrast agents for magnetic resonance imaging. Physical properties of this class of materials depend critically on a number of parameters, including crystallinity, stoichiometry and cation distribution. In this work we have performed a Resonant Inelastic soft X-ray Scattering (RIXS) study on a series of 5 nm cobalt-doped maghemite nanoparticles to obtain direct quantitative information on cation distribution as a function of cobalt doping. We found that the distribution of divalent cobalt is stable in the investigated doping range and slightly different from that of bulk, stoichiometric cobalt ferrite. These results confirm that cobalt doping can be used to finely tune the magnetic properties of nanostructured ferrites without modifying their structural integrity.

4.
Faraday Discuss ; 213(0): 215-230, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30364919

RESUMO

Resistive switching oxides are highly attractive candidates to emulate synaptic behaviour in artificial neural networks. Whilst the most widely employed systems exhibit filamentary resistive switching, interface-type switching systems based on a tunable tunnel barrier are of increasing interest, since their gradual SET and RESET processes provide an analogue-type of switching required to take over synaptic functionality. Interface-type switching devices often consist of bilayers of one highly mixed-conductive oxide layer and one highly insulating tunnel oxide layer. However, most tunnel oxides used for interface-type switching are also prone to form conducting filaments above a certain voltage bias threshold. We investigated two different tunnel oxide devices, namely, Pr1-xCaxMnO3 (PCMO) with yttria-stabilized ZrO2 (YSZ) tunnel barrier and substoichiometric TaOx with HfO2 tunnel barrier by interface-sensitive, hard X-ray photoelectron spectroscopy (HAXPES) in order to gain insights into the chemical changes during filamentary and interface-type switching. The measurements suggest an exchange of oxygen ions between the mixed conducting oxide layer and the tunnel barrier, that causes an electrostatic modulation of the effective height of the tunnel barrier, as the underlying switching mechanism for the interface-type switching. Moreover, we observe by in operando HAXPES analysis that this field-driven ionic motion across the whole area is sustained even if a filament is formed in the tunnel barrier and the device is transformed into a filamentary-type switching mode.

5.
Langmuir ; 34(12): 3604-3609, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29510051

RESUMO

We investigate the solvatochromic effect of a Fe-based spin-crossover (SCO) compound via ambient pressure soft X-ray absorption spectroscopy (AP-XAS) and atomic force microscopy (AFM). AP-XAS provides the direct evidence of the spin configuration for the Fe(II) 3d states of the SCO material upon in situ exposure to specific gas or vapor mixtures; concurrent changes in nanoscale topography and mechanical characteristics are revealed via AFM imaging and AFM-based force spectroscopy, respectively. We find that exposing the SCO material to gaseous helium promotes an effective decrease of the transition temperature of its surface layers, while the exposure to methanol vapor causes opposite surfacial and bulk solvatochromic effects. Surfacial solvatochromism is accompanied by a dramatic reduction of the surface layers stiffness. We propose a rationalization of the observed effects based on interfacial dehydration and solvation phenomena.

6.
ACS Appl Mater Interfaces ; 10(9): 8132-8140, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29411962

RESUMO

Vertical crossbar devices based on manganite and cobalt injecting electrodes and a metal-quinoline molecular transport layer are known to manifest both magnetoresistance (MR) and electrical bistability. The two effects are strongly interwoven, inspiring new device applications such as electrical control of the MR and magnetic modulation of bistability. To explain the device functionality, we identify the mechanism responsible for electrical switching by associating the electrical conductivity and the impedance behavior with the chemical states of buried layers obtained by in operando photoelectron spectroscopy. These measurements revealed that a significant fraction of oxygen ions migrate under voltage application, resulting in a modification of the electronic properties of the organic material and of the oxidation state of the interfacial layer with the ferromagnetic contacts. Variable oxygen doping of the organic molecules represents the key element for correlating bistability and MR, and our measurements provide the first experimental evidence in favor of the impurity-driven model describing the spin transport in organic semiconductors in similar devices.

7.
ACS Appl Mater Interfaces ; 9(27): 23099-23106, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28613812

RESUMO

We report the study of anatase TiO2(001)-oriented thin films grown by pulsed laser deposition on LaAlO3(001). A combination of in situ and ex situ methods has been used to address both the origin of the Ti3+-localized states and their relationship with the structural and electronic properties on the surface and the subsurface. Localized in-gap states are analyzed using resonant X-ray photoelectron spectroscopy and are related to the Ti3+ electronic configuration, homogeneously distributed over the entire film thickness. We find that an increase in the oxygen pressure corresponds to an increase in Ti3+ only in a well-defined range of deposition pressure; outside this range, Ti3+ and the strength of the in-gap states are reduced.

8.
Dalton Trans ; 45(1): 134-43, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26575005

RESUMO

We investigated the influence of surfaces in the formation of different crystal structures of a spin crossover compound, namely [Fe(L)2] (LH: (2-(pyrazol-1-yl)-6-(1H-tetrazol-5-yl)pyridine), which is a neutral compound thermally switchable around room temperature. We observed that the surface induces the formation of two different crystal structures, which exhibit opposite spin transitions, i.e. on heating them up to the transition temperature, one polymorph switches from high spin to low spin and the second polymorph switches irreversibly from low spin to high spin. We attributed this inversion to the presence of water molecules H-bonded to the complex tetrazolyl moieties in the crystals. Thin deposits were investigated by means of polarized optical microscopy, atomic force microscopy, X-ray diffraction, X-ray absorption spectroscopy and micro Raman spectroscopy; moreover the analysis of the Raman spectra and the interpretation of spin inversion were supported by DFT calculations.

9.
Adv Mater ; 26(17): 2730-5, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24706476

RESUMO

By using hard X-ray photoelectron spectroscopy experimentally, proof is provided that resistive switching in Ti/Pr0.48 Ca0.52 MnO3 (PCMO) devices is based on a redox-process that mainly occurs on the Ti-side. The different resistance states are determined by the amount of fully oxidized Ti-ions in the stack, implying a reversible redox-reaction at the interface, which governs the formation and shortening of an insulating tunnel barrier.

10.
Nanoscale ; 5(9): 3954-60, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23535767

RESUMO

We have investigated the role of the electroforming process in the establishment of resistive switching behaviour for Pt/Ti/Pr0.5Ca0.5MnO3/SrRuO3 layered heterostructures (Pt/Ti/PCMO/SRO) acting as non-volatile Resistance Random Access Memories (RRAMs). Electron spectroscopy measurements demonstrate that the higher resistance state resulting from electroforming of as-prepared devices is strictly correlated with the oxidation of the top electrode Ti layer through field-induced electromigration of oxygen ions. Conversely, PCMO exhibits oxygen depletion and downward change of the chemical potential for both resistive states. Impedance spectroscopy analysis, supported by the detailed knowledge of these effects, provides an accurate model description of the device resistive behaviour. The main contributions to the change of resistance from the as-prepared (low resistance) to the electroformed (high resistance) states are respectively due to reduced PCMO at the boundary with the Ti electrode and to the formation of an anisotropic n-p junction between the Ti and the PCMO layers.

11.
Adv Mater ; 25(4): 534-8, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23097157

RESUMO

Memristors are one of the most promising candidates for future information and communications technology (ICT) architectures. Two experimental proofs of concept are presented based on the intermixing of spintronic and memristive effects into a single device, a magnetically enhanced memristor (MEM). By exploiting the interaction between the memristance and the giant magnetoresistance (GMR), a universal implication (IMP) logic gate based on a single MEM device is realized.

12.
Nano Lett ; 11(10): 4079-82, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21861485

RESUMO

Spin-based electronics in topological insulators (TIs) is favored by the long spin coherence(1,2) and consequently fault-tolerant information storage. Magnetically doped TIs are ferromagnetic up to 13 K,(3) well below any practical operating condition. Here we demonstrate that the long-range ferromagnetism at ambient temperature can be induced in Bi(2-x)Mn(x)Te(3) by the magnetic proximity effect through deposited Fe overlayer. This result opens a new path to interface-controlled ferromagnetism in TI-based spintronic devices.

13.
Chem Commun (Camb) ; 47(31): 8823-5, 2011 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-21720629

RESUMO

Alkanethiol Self-Assembly Monolayers (SAMs) were investigated by means of BiModal Atomic Force Microscopy. Morphological and mechanical properties show a parabolic trend vs. the chain length n, which is ascribed to the disorder at the SAMs/Au interface. This explains the trend of charge injection across SAMs in organic field effect transistors.

14.
Rev Sci Instrum ; 82(2): 025110, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21361636

RESUMO

We present a home-built high-vacuum system for performing organic semiconductor thin-film growth and its electrical characterization during deposition (real-time) or after deposition (in situ). Since the environment conditions remain unchanged during the deposition and electrical characterization process, a direct correlation between growth mode and electrical properties of thin film can be obtained. Deposition rate and substrate temperature can be systematically set in the range 0.1-10 ML∕min and RT-150 °C, respectively. The sample-holder configuration allows the simultaneous electrical monitoring of up to five organic thin-film transistors (OTFTs). The OTFTs parameters such as charge carrier mobility µ, threshold voltage V(TH), and the on-off ratio I(on)∕I(off) are studied as a function of the semiconductor thickness, with a submonolayer accuracy. Design, operation, and performance of the setup are detailed. As an example, the in situ and real-time electrical characterization of pentacene TFTs is reported.

15.
Phys Rev Lett ; 104(24): 246602, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20867320

RESUMO

Drain-source current in organic thin-film transistors has been monitored in situ and in real time during the deposition of pentacene. The current starts to flow when percolation of the first monolayer (ML) occurs and, depending on the deposition rate, saturates at a coverage in the range 2-7 MLs. The number of active layers contributing to the current and the spatial distribution of charge carriers are modulated by the growth mode. The thickness of the accumulation layer, represented by an effective Debye length, scales as the morphological correlation length. These results show that the effective Debye length is not just a material parameter, but depends on the multiscale morphology. Earlier controversial results can be unified within this framework.

16.
Nanoscale ; 2(10): 2069-72, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20697613

RESUMO

We present a novel additive process, which allows the spatially controlled integration of nanoparticles (NPs) inside silicon surfaces. The NPs are placed between a conductive stamp and a silicon surface; by applying a bias voltage a SiO(2) layer grows underneath the stamp protrusions, thus embedding the particles. We report the successful nanoembedding of CoFe(2)O(4) nanoparticles patterned in lines, grids and logic structures.


Assuntos
Nanopartículas/química , Nanotecnologia/métodos , Dióxido de Silício/química , Silício/química , Catálise , Cobalto/química , Condutividade Elétrica , Eletrônica , Compostos Férricos/química , Teste de Materiais , Microscopia de Força Atômica/métodos , Nanoestruturas/química
17.
Nanotechnology ; 19(43): 435303, 2008 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-21832690

RESUMO

We investigate the fabrication of nanometric patterns on silicon surfaces by using the parallel-local anodic oxidation technique with soft stamps. This method yields silicon oxide nanostructures 15 nm high, namely at least five times higher than the nanostructures made with local anodic oxidation using atomic force microscopy, and thanks to the size of the stamp enables one to pattern the surface across a centimetre length scale. To implement this technique, we built a machine to bring the metallized polydimethylsiloxane stamp in contact with the silicon surface, subsequently inserted in a sealed chamber with controlled relative humidity. The oxide nanostructures are fabricated when a bias voltage of 36 V is applied between the stamp and the silicon for 2 min, with a relative humidity of 90%. The flexibility of the stamp enables a homogeneous conformal contact with the silicon surface, resulting in an excellent reproducibility of the process. Moreover, by means of two subsequent oxidations with the same stamp and just rotating the sample, we are able to fabricate complex nanostructures. Finally, a detailed study of the oxidation mechanism, also using a finite element analysis, has been performed to understand the underlying mechanism.

18.
Nat Mater ; 4(9): 688-92, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16113682

RESUMO

Understanding the adsorption mechanisms of large molecules on metal surfaces is a demanding task. Theoretical predictions are difficult because of the large number of atoms that have to be considered in the calculations, and experiments aiming to solve the molecule-substrate interaction geometry are almost impossible with standard laboratory techniques. Here, we show that the adsorption of complex organic molecules can induce perfectly ordered nanostructuring of metal surfaces. We use surface X-ray diffraction to investigate in detail the bonding geometry of C(60) with the Pt(111) surface, and to elucidate the interaction mechanism leading to the restructuring of the Pt(111) surface. The chemical interaction between one monolayer of C(60) molecules and the clean Pt(111) surface results in the formation of an ordered sqrt[13] x sqrt[13]R13.9 degrees reconstruction based on the creation of a surface vacancy lattice. The C(60) molecules are located on top of the vacancies, and 12 covalent bonds are formed between the carbon atoms and the 6 platinum surface atoms around the vacancies. In-plane displacements induced on the platinum substrate are of the order of a few picometres in the top layer, and are undetectable in the deeper layers.


Assuntos
Materiais Revestidos Biocompatíveis/química , Fulerenos/química , Teste de Materiais/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Platina/química , Difração de Raios X/métodos , Adsorção , Materiais Revestidos Biocompatíveis/análise , Fulerenos/análise , Conformação Molecular , Nanoestruturas/análise , Platina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...