Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mem Inst Oswaldo Cruz ; 116: e200326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34008737

RESUMO

BACKGROUND: Schistosomiasis is a disease caused by Schistosoma. Due to its complex life cycle, evolutionary position and sexual dimorphism, schistosomes have several mechanisms of gene regulation. MicroRNAs (miRNAs) are short endogenous RNAs that regulate gene expression at the post-transcriptional level by targeting mRNA transcripts. OBJECTIVES: Here, we tested 12 miRNAs and identified their putative targets using a computational approach. METHODS: We performed the expression profiles of a set of miRNAs and their putative targets during the parasite's life cycle by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). FINDINGS: Our results showed differential expression patterns of the mature miRNAs sma-miR-250; sma-miR-92a; sma-miR-new_4-3p; sma-miR-new_4-5p; sma-miR-new_5-5p; sma-miR-new_12-5p; sma-miR-new_13-3p and sma-miR-new_13-5p. Interestingly, many of the putative target genes are linked to oxidative phosphorylation and are up-regulated in adult-worms, which led us to suggest that miRNAs might play important roles in the post-transcriptional regulation of genes related to energetic metabolism inversion during parasite development. It is noteworthy that the expression of sma-miR-new_13-3p exhibited a negative correlation on SmNADH:ubiquinone oxidoreductase complex I. MAIN CONCLUSIONS: Our analysis revealed putative miRNA genes related to important biological processes, such as transforming growth factor beta (TGF-ß) signaling, proteasome regulation, glucose and lipid metabolism, immune system evasion and transcriptional regulation.


Assuntos
MicroRNAs , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Estágios do Ciclo de Vida/genética , MicroRNAs/genética , Schistosoma mansoni/genética , Transdução de Sinais
2.
Mem. Inst. Oswaldo Cruz ; 116: e200326, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1250363

RESUMO

BACKGROUND Schistosomiasis is a disease caused by Schistosoma. Due to its complex life cycle, evolutionary position and sexual dimorphism, schistosomes have several mechanisms of gene regulation. MicroRNAs (miRNAs) are short endogenous RNAs that regulate gene expression at the post-transcriptional level by targeting mRNA transcripts. OBJECTIVES Here, we tested 12 miRNAs and identified their putative targets using a computational approach. METHODS We performed the expression profiles of a set of miRNAs and their putative targets during the parasite's life cycle by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). FINDINGS Our results showed differential expression patterns of the mature miRNAs sma-miR-250; sma-miR-92a; sma-miR-new_4-3p; sma-miR-new_4-5p; sma-miR-new_5-5p; sma-miR-new_12-5p; sma-miR-new_13-3p and sma-miR-new_13-5p. Interestingly, many of the putative target genes are linked to oxidative phosphorylation and are up-regulated in adult-worms, which led us to suggest that miRNAs might play important roles in the post-transcriptional regulation of genes related to energetic metabolism inversion during parasite development. It is noteworthy that the expression of sma-miR-new_13-3p exhibited a negative correlation on SmNADH:ubiquinone oxidoreductase complex I. MAIN CONCLUSIONS Our analysis revealed putative miRNA genes related to important biological processes, such as transforming growth factor beta (TGF-β) signaling, proteasome regulation, glucose and lipid metabolism, immune system evasion and transcriptional regulation.


Assuntos
Animais , MicroRNAs/genética , Schistosoma mansoni/genética , Transdução de Sinais , Regulação da Expressão Gênica/genética , Perfilação da Expressão Gênica , Estágios do Ciclo de Vida/genética
3.
Parasitol Res ; 114(5): 1769-77, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25663106

RESUMO

Ubiquitin-conjugating enzymes (Ub-E2) perform the second step of ubiquitination and, consequently, are essential for regulating proteolysis and for modulating protein function, interactions and trafficking. Previously, our group demonstrated the crucial role of ubiquitination and the Ub-proteasome pathway during the Schistosoma mansoni life cycle. In the present investigation, we used a homology-based genome-wide bioinformatics approach to identify and molecularly characterise the Ub-E2 enzymes in S. mansoni. The putative functions were further investigated through molecular phylogenetic and expression profile analyses using cercariae, adult worms, eggs and mechanically transformed schistosomula (MTS) cultured in vitro for 3.5 h or 1 or 3 days. We identified, via in silico analysis, 17 Ub-E2 enzymes with conserved structural characteristics: the beta-sheet and the helix-2 form a central core bordered by helix-1 at one side and helix-3 and helix-4 at the other. The observed quantitative differences in the steady-state transcript levels between the cercariae and adult worms may contribute to the differential protein ubiquitination observed during the parasite's life cycle. This study is the first to identify and characterise the E2 ubiquitin conjugation family in S. mansoni and provides fundamental information regarding their molecular phylogenetics and developmental expression during intra-mammalian stages.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas de Helminto/metabolismo , Schistosoma mansoni/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Cercárias/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Helminto/genética , Estágios do Ciclo de Vida/fisiologia , Filogenia , Complexo de Endopeptidases do Proteassoma/genética , Schistosoma mansoni/genética , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitinação
4.
Parasitol Res ; 112(12): 4151-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24013345

RESUMO

Several proteins and different species of RNA that are produced in the nucleus are exported through the nuclear pore complexes, which require a family of conserved nuclear export receptors called exportins (XPOs). It has been reported that the XPOs (XPO1, XPO5, and XPOT) are directly involved in the transport processes of noncoding RNAs from the nucleus to the cytoplasm and/or from cytoplasm to the nucleus. All three genes are present in fungi, plants, and deuterostome metazoans. However, protostome metazoan species lack one of the three genes across evolution. In this report, we have demonstrated that all three XPO proteins are present in the parasite protostome Schistosoma mansoni. As this parasite has a complex life cycle presenting several stages in different hosts and environments, implying a differential gene regulation, we proposed a genomic analysis of XPOs to validate their annotation. The results showed the conservation of exportin family members and gene duplication events in S. mansoni. We performed quantitative RT-PCR, which revealed an upregulation of SmXPO1 in 24 h schistosomula (sixfold when compared with cercariae), and similar transcription levels were observed for SmXPO5 and SmXPOT in all the analyzed stages. These three XPO proteins have been identified for the first time in the protostome clade, which suggests a higher complexity in RNA transport in the parasite S. mansoni. Taken together, these results suggest that RNA transport by exportins might control cellular processes during cercariae, schistosomula, and adult worm development.


Assuntos
Proteínas de Helminto/metabolismo , Carioferinas/metabolismo , Schistosoma mansoni/genética , Animais , Evolução Biológica , Sequência Conservada , Duplicação Gênica , Proteínas de Helminto/genética , Carioferinas/genética , Schistosoma mansoni/metabolismo , Transcriptoma
5.
Parasitol Res ; 112(6): 2245-53, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23519425

RESUMO

The COP9 signalosome (CSN) is an eight-subunit complex found in all eukaryotes and shares structural features with both the 26S proteasome 'lid' and translation factor eIF3. Recent data have demonstrated that the CSN is a regulator of the ubiquitin (Ub) proteasome system (UPS). CSN controls substrate ubiquitination by cullin-RING Ub ligases, a step which determines substrate specificity of the UPS. Here, we reconstructed the CSN complex in Schistosoma mansoni and identified eight homologous components. Among these homologues, five subunits were predicted with their full-length sequences. Phylogenetic analysis confirmed the evolutionary conservation and the architecture of CSN, as well as the 26S proteasome 'lid'. We performed quantitative reverse transcription-polymerase chain reaction to detect the expression of the SmCSN transcripts. The Smcsn1, Smcsn2, Smcsn3, Smcsn4, Smcsn5, Smcsn6, Smcsn7 and Smcsn8 genes were up-regulated in adult worms compared to cercariae, and the expression levels were similar to that of in vitro cultivated schistosomula. Taken together, these results suggest that the CSN complex may be important during cercariae, schistosome and adult worm development and might explain, at least in part, the differences among UPSs during the parasite life cycle.


Assuntos
Proteínas de Helminto/genética , Complexos Multiproteicos/genética , Peptídeo Hidrolases/genética , Schistosoma mansoni/genética , Animais , Complexo do Signalossomo COP9 , Sequência Conservada , Perfilação da Expressão Gênica , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Schistosoma mansoni/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos
6.
Mol Biochem Parasitol ; 166(1): 32-41, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19428670

RESUMO

Schistosoma mansoni is a major causative agent of schistosomiasis, an important parasitic disease that constitutes a severe health problem in developing countries. Even though an effective treatment exists, it does not prevent re-infection and the development of an effective vaccine still remains the most desirable means of control for this disease. In this work we describe the cloning and characterization of a S. mansoni nucleotide pyrophosphatase/phosphosdiesterase type 5 (SmNPP-5), previously identified in the tegument by proteomic studies. In silico analysis predicts an N-terminal signal peptide, three N-glycosylation sites and a C-terminal transmembrane domain similar to that described for mammalian isoforms. Real-time quantitative RT-PCR and Western blot analyses determined that SmNPP-5 is significantly upregulated in the transition from free-living cercaria to schistosomulum and adult worm parasitic stages; additionally, the native protein was demonstrated to be N-glycosylated. Immunolocalization experiments and tegument surface membrane preparations confirm the protein as a tegument surface protein. Furthermore, the ectolocalization of this enzyme was corroborated through the hydrolysis of the phosphodiesterase specific substrate (rho-Nph-5'-TMP) by living adult and 21-day-old worms. Interestingly, pre-incubation of adult and 21-day-old worms with anti-rSmNPP-5 antibody was able to reduce by 50-60% the enzyme activity. These results suggest that SmNPP-5 is closely associated with the new tegument surface generation after cercarial penetration, and being located at the host-parasite interface, is a potential target for immune intervention.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Proteínas de Helminto/metabolismo , Proteínas de Membrana/metabolismo , Schistosoma mansoni/enzimologia , Sequência de Aminoácidos , Animais , Anticorpos Anti-Helmínticos/metabolismo , Clonagem Molecular , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/química , Regulação Enzimológica da Expressão Gênica , Glicosilação , Proteínas de Helminto/química , Estágios do Ciclo de Vida/fisiologia , Proteínas de Membrana/química , Dados de Sequência Molecular , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Schistosoma mansoni/genética , Alinhamento de Sequência
7.
PLoS Negl Trop Dis ; 2(9): e290, 2008 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-18820739

RESUMO

BACKGROUND: Among animal models of schistosomiasis, the rhesus macaque is unique in that an infection establishes but egg excretion rapidly diminishes, potentially due to loss of adult worms from the portal system via shunts or death by immune attack. PRINCIPAL FINDINGS: To investigate this, six rhesus macaques were exposed to Schistosoma mansoni cercariae and the infection monitored until portal perfusion at 18 weeks. Despite a wide variation in worm numbers recovered, fecal egg output and circulating antigen levels indicated that a substantial population had established in all animals. Half the macaques had portal hypertension but only one had portacaval shunts, ruling out translocation to the lungs as the reason for loss of adult burden. Many worms had a shrunken and pallid appearance, with degenerative changes in intestines and reproductive organs. Tegument, gut epithelia and muscles appeared cytologically intact but the parenchyma was virtually devoid of content. An early and intense IgG production correlated with low worm burden at perfusion, and blood-feeding worms cultured in the presence of serum from these animals had stunted growth. Using immunoproteomics, gut digestive enzymes, tegument surface hydrolases and antioxidant enzymes were identified as targets of IgG in the high responder animals. SIGNIFICANCE: It appears that worms starve to death after cessation of blood feeding, as a result of antibody-mediated processes. We suggest that proteins in the three categories above, formulated to trigger the appropriate mechanisms operating in rhesus macaques, would have both prophylactic and therapeutic potential as a human vaccine.


Assuntos
Macaca mulatta/parasitologia , Schistosoma mansoni/isolamento & purificação , Esquistossomose mansoni/patologia , Animais , Anticorpos Anti-Helmínticos/sangue , Anticorpos Anti-Helmínticos/imunologia , Formação de Anticorpos , Antígenos de Helmintos/imunologia , Ensaio de Imunoadsorção Enzimática , Fezes/parasitologia , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Intestinos/parasitologia , Oviposição , Sistema Porta/parasitologia , Sistema Porta/fisiopatologia , Schistosoma mansoni/crescimento & desenvolvimento , Schistosoma mansoni/fisiologia , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA