Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging Cell ; 22(12): e14011, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37969056

RESUMO

Accurate biomarkers for predicting COVID-19 severity have remained an unmet need due to an incomplete understanding of virus pathogenesis and heterogeneity among patients. Cellular senescence and its pro-inflammatory phenotype are suggested to be a consequence of SARS-CoV-2 infection and potentially drive infection-dependent pathological sequelae. Senescence-associated markers in infected individuals have been identified primarily in the lower respiratory tract, while little is known about their presence in more easily accessible bio-specimens. Here, we measured the abundance of senescence-associated signatures in whole blood, plasma and peripheral blood mononuclear cells (PBMCs) of COVID-19 patients and patients without an infection. Bulk transcriptomic and targeted proteomic assays revealed that the level of senescence-associated markers, including the senescence-associated secretory phenotype (SASP), is predictive of SARS-CoV-2 infection. Single-cell RNA-sequencing data demonstrated that a senescence signature is particularly enriched in monocytes of COVID-19 patients, partially correlating with disease severity. Our findings suggest that monocytes are prematurely induced to senescence by SARS-CoV-2 infection, might contribute to exacerbating a SASP-like inflammatory response and can serve as markers and predictors for COVID-19 and its sequelae.


Assuntos
COVID-19 , Monócitos , Humanos , Leucócitos Mononucleares , Proteômica , SARS-CoV-2 , Progressão da Doença
2.
Trends Cell Biol ; 30(10): 777-791, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32800659

RESUMO

Cellular senescence is a state of stable cell cycle arrest associated with macromolecular alterations and secretion of proinflammatory cytokines and molecules. From their initial discovery in the 1960s, senescent cells have been hypothesized as potential contributors to the age-associated loss of regenerative potential. Here, we discuss recent evidence that implicates cellular senescence as a central regulatory mechanism of the aging process. We provide a comprehensive overview of age-associated pathologies in which cellular senescence has been implicated. We describe mechanisms by which senescent cells drive aging and diseases, and we discuss updates on exploiting these mechanisms as therapeutic targets. Finally, we critically analyze the use of senotherapeutics and their translation to the clinic, highlighting limitations and suggesting ideas for future applications and developments.


Assuntos
Senescência Celular , Doença , Longevidade , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Humanos , Modelos Biológicos
3.
J Biol Regul Homeost Agents ; 27(1): 9-22, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23489683

RESUMO

The immune system function oscillates with a 24-hour period driving circadian rhythmicity of immune responses. A circadian timing system comprising central and peripheral oscillators entrains body rhythmicity of physiology and behavior to environmental cues by means of humoral signals and autonomic neural outputs. In every single cell an oscillator goes ticking through a molecular clock operated by transcriptional/translational feedback loops driven by the rhythmic expression of circadian genes. This clock gene machinery steers daily oscillations in the regulation of immune cell activity, driving the periodicity in immune system function. The transcriptional networks that regulate temporal variation in gene expression in immunocompetent cells and tissues respond to diverse physiological clues, addressing well-timed adjustments of transcription and translation processes. Nuclear receptors comprise a unique class of transcriptional regulators that are capable of gauging hormones, metabolites, endobiotics and xenobiotics, linking ligand sensing to transcriptional responses in various cell types through switching between coactivator and corepressor recruitment. The expression of coregulators is highly responsive to physiological signals, and plays an important role in the control of rhythmic patterns of gene expression, optimizing the switch between nycthemeral patterns, and synchronizing circadian rhythmicity with changing physiological demands across the light-dark cycle. The nuclear receptors and transcription factors expressed in the immune components contribute to the cross-talk between the circadian timing system, the clock gene machinery and the immune system, influencing transcriptional activities and directing cell-type specific gene expression programs linked to innate and adaptive immune responses.


Assuntos
Relógios Circadianos/genética , Regulação da Expressão Gênica , Sistema Imunitário/metabolismo , Transcrição Gênica , Imunidade Adaptativa/genética , Animais , Humanos , Imunidade Inata/genética , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...