Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vopr Virusol ; 68(5): 372-384, 2023 Nov 07.
Artigo em Russo | MEDLINE | ID: mdl-38156572

RESUMO

RELEVANCE: Ebola virus disease (EVD) is an acute infectious disease with an extremely high case fatality rate reaching up to 90%. EVD has become widely known since 2014-2016, when outbreak in West Africa occurred and led to epidemic, which caused travel-related cases on the territory of other continents. There are two vaccines against EVD, prequalified by WHO for emergency use, as well as a number of vaccines, approved by local regulators in certain countries. However, even with the availability of effective vaccines, the lack of data on immune correlates of protection and duration of protective immune response in humans and primates is limiting factor for effectively preventing the spread of EVD outbreaks. AIMS: This review highlights experience of use of EVD vaccines during outbreaks in endemic areas, summarizes data on vaccine immunogenicity in clinical trials, and discusses perspectives for further development and use of effective EVD vaccines.


Assuntos
Vacinas contra Ebola , Doença pelo Vírus Ebola , Animais , Humanos , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , Viagem , Doença Relacionada a Viagens , Surtos de Doenças/prevenção & controle
2.
Her Russ Acad Sci ; 92(4): 381-391, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091850

RESUMO

Over the two years that have passed since the WHO announced on March 11, 2020, a pandemic of the new coronavirus disease COVID-19, more than 460 million cases of the disease have been detected in the world, of which more than five million have been fatal. During the natural evolution of the COVID-19 pathogen, dominant variants emerge that account for most new infections. The WHO constantly monitors coronavirus mutations that potentially pose an epidemiological danger. Currently, the WHO divides modified variants of the SARS-CoV-2 virus into variants of concern (VOC) and variants of interest (VOI). The WHO-designated group of variants of concern includes potentially the most dangerous lines, which are characterized by a complex of new properties. This group also includes the Omicron variant, which has become the dominant agent of the new wave of the COVID-19 pandemic. The aim of this work is to analyze the characteristics of the SARS-CoV-2 Omicron strain, the dominant agent of the new wave of the COVID-19 pandemic. The proposed mechanism of origin of the Omicron variant, its geographical distribution, the features of the disease caused by it, and the distinguishing features from diseases caused by the Delta variant and the original Wuhan strain of the SARS-CoV-2 virus, mutations of the Omicron variant compared to the parent strain of the SARS-CoV-2 virus, the genetic variability of the Omicron variant, and the epidemiological characteristics of the disease it causes are considered. Particular attention is paid to evaluation of the preventive and therapeutic effectiveness of the existing medical means of protection against COVID-19 in relation to the Omicron strain.

3.
Inflamm Res ; 71(5-6): 627-639, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35434745

RESUMO

OBJECTIVE AND DESIGN: The existing biological models of diffuse alveolar damage (DAD) in mice have many shortcomings. To offset these shortcomings, we have proposed a simple, nonsurgical, and reproducible method of unilateral total damage of the left lung in ICR mice. This model is based on the intrabronchial administration of a mixture of bacterial lipopolysaccharide (LPS) from the cell wall of S. enterica and α-galactosylceramide (inducing substances) to the left lung. METHODS: Using computer tomography of the lungs with endobronchial administration of contrast material, we have been able to perform an operative intravital verification of the targeted delivery of the inducer. The model presented is characterized by more serious and homogeneous damage of the affected lung compared to the existing models of focal pneumonia; at the same time, our model is characterized by longer animal survival since the right lung remains intact. RESULTS: The model is also characterized by diffuse alveolar damage of the left lung, animal survival of 100%, abrupt increases in plasma levels of TNFa, INFg, and IL-6, and significant myocardial overload in the right heart. It can be used to assess the efficacy of innovative drugs for the treatment of DAD and ARDS as the clinical manifestations that are developed in patients infected with SARS-CoV-2. Morphological patterns of lungs in the noninfectious ("sterile") model of DAD induced by LPS simultaneously with α-galactosylceramide (presented here) and in the infectious model of DAD induced by SARS-CoV-2 have been compared. CONCLUSION: The DAD model we have proposed can be widely used for studying the efficacy of candidate molecules for the treatment of infectious respiratory diseases, such as viral pneumonias of different etiology, including SARS-CoV-2.


Assuntos
COVID-19 , Pneumonia Viral , Animais , Modelos Animais de Doenças , Humanos , Lipopolissacarídeos , Pulmão , Camundongos , Camundongos Endogâmicos ICR , SARS-CoV-2
4.
Vopr Virusol ; 66(6): 409-416, 2022 01 08.
Artigo em Russo | MEDLINE | ID: mdl-35019247

RESUMO

Since the Dabie bandavirus (DBV; former SFTS virus, SFTSV) was identified, the epidemics of severe fever with thrombocytopenic syndrome (SFTS) caused by this virus have occurred in several countries in East Asia. The rapid increase in incidence indicates that this infectious agent has a pandemic potential and poses an imminent global public health threat.The analysis of molecular evolution of SFTS agent that includes its variants isolated in China, Japan and South Korea was performed in this review. The evolution rate of DBV and the estimated dates of existence of the common ancestor were ascertained, and the possibility of reassortation was demonstrated.The evolutionary rates of DBV genome segments were estimated to be 2.28 × 10-4 nucleotides/site/year for S-segment, 2.42 × 10-4 for M-segment, and 1.19 × 10-4 for L-segment. The positions of positive selection were detected in the viral genome.Phylogenetic analyses showed that virus may be divided into two clades, containing six different genotypes. The structures of phylogenetic trees for S-, M- and L-segments showed that all genotypes originate from the common ancestor.Data of sequence analysis suggest that DBV use several mechanisms to maintain the high level of its genetic diversity. Understanding the phylogenetic factors that determine the virus transmission is important for assessing the epidemiological characteristics of the disease and predicting its possible outbreaks.


Assuntos
Infecções por Bunyaviridae , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Infecções por Bunyaviridae/epidemiologia , Evolução Molecular , Genoma Viral/genética , Genótipo , Humanos , Filogenia
5.
Vopr Virusol ; 66(4): 289-298, 2021 09 18.
Artigo em Russo | MEDLINE | ID: mdl-34545721

RESUMO

INTRODUCTION: The outbreaks of the Zaire ebolavirus (ZE) disease (ZED) that have arisen in the last decade determine the need to study the infection pathogenesis, the formation of specific immunity forming as well as the development of effective preventive and therapeutic means. All stages of fight against the ZED spread require the experimental infection in sensitive laboratory animals, which are rhesus monkeys in case of this disease .The aim of the study is to evaluate the rhesus monkey cellular immunity following the ZE experimental infection by the means of flow cytometry (cytofluorimetry). MATERIAL AND METHODS: Male rhesus monkeys were intramuscularly infected by the dose of 15 LD50 (dose of the pathogen that causes 50% mortality of infected animals) of the ZE, the Zaire strain (ZEBOV). Levels of 18 peripheral blood lymphocyte populations of the animals before the ZE experimental infection and at the terminal stage of the disease were assessed using flow cytometry. RESULTS AND DISCUSSION: The certain changes in the levels of the lymphocyte populations were observed following infection, indicating simultaneous activation and suppression of the immune system during ZED. The increase in content was observed for T-lymphocytes, T-helper and cytotoxic T-lymphocytes expressing the corresponding markers of early activation. The decrease was recorded for T-lymphocytes and double-positive T-lymphocytes expressing corresponding markers of late activation, as well as natural killer cells expressing CD8 (p < 0.05). CONCLUSION: For the first time in the Russian Federation, the rhesus monkey cellular immunity before and after the ZE experimental infection was assessed using flow cytometry.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , República Democrática do Congo , Citometria de Fluxo , Imunidade Celular , Macaca mulatta , Masculino
6.
Vopr Virusol ; 66(2): 123-128, 2021 05 15.
Artigo em Russo | MEDLINE | ID: mdl-33993682

RESUMO

INTRODUCTION: The pandemic spread of a new coronavirus infection, COVID-19, has caused a global emergency and attracted the attention of public health professionals and the population of all countries. A significant increase in the number of new cases of SARS-CoV-2 infection demonstrates the urgency of finding drugs effective against this pathogen.The aim of this work was to evaluate the in vitro antiviral efficacy of human recombinant alpha-2b interferon (IFN-α2b) against SARS-CoV-2 virus. MATERIAL AND METHODS: The experiments had been carried out on Vero Cl008, the continuous line of African green monkey (Chlorocebus sabaeus) kidney cells. The effectiveness of the drugs was assessed by the suppression of viral reproduction in vitro. The biological activity was determined using titration of a virus-containing suspension in a Vero Cl008 cell culture by the formation of negative colonies. RESULTS: The antiviral efficacy of the IFN-α2b-based medications, which have a high safety profile and proven efficacy in the prevention and treatment of influenza and acute respiratory viral infections (ARVI), has been studied against the new pandemic SARS-CoV-2 virus in vitro experiments in Vero C1008 cell culture. IFN-α2b effectively inhibits the reproduction of the virus when applied both 24 hrs before and 2 hrs after infection. In the IFN-α2b concentration range 102-106 IU/ml a complete suppression of the reproduction of the SARS-CoV-2 virus had been demonstrated. DISCUSSION: IFN-α2b demonstrated in vitro high antiviral activity against SARS-CoV-2. In addition, the substance has a high chemotherapeutic index (>1000). CONCLUSION: Medications for intranasal use based on IFN-α2b have high antiviral activity and are promising drugs for in vivo study in terms of prevention and treatment of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/imunologia , Interferon alfa-2/farmacologia , SARS-CoV-2/imunologia , Animais , COVID-19/patologia , Chlorocebus aethiops , Humanos , Células Vero
7.
Acta Naturae ; 13(4): 53-63, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127147

RESUMO

Ebola fever is an acute, highly contagious viral disease with a mortality rate that can reach 90%. There are currently no licensed therapeutic agents specific to Ebola in the world. Monoclonal antibodies (MAbs) with viral-neutralizing activity and high specificity to the Ebola virus glycoprotein (EBOV GP) are considered as highly effective potential antiviral drugs. Over the past decade, nanobodies (single-domain antibodies, non-canonical camelid antibodies) have found wide use in the diagnosis and treatment of various infectious and non-infectious diseases. In this study, a panel of nanobodies specifically binding to EBOV GP was obtained using recombinant human adenovirus 5, expressing GP (Ad5-GP) for alpaca (Vicugna pacos) immunization, for the first time. Based on specific activity assay results, affinity constants, and the virus-neutralizing activity against the recombinant vesicular stomatitis virus pseudotyped with EBOV GP (rVSV-GP), the most promising clone (aEv6) was selected. The aEv6 clone was then modified with the human IgG1 Fc fragment to improve its pharmacokinetic and immunologic properties. To assess the protective activity of the chimeric molecule aEv6-Fc, a lethal model of murine rVSV-GP infection was developed by using immunosuppression. The results obtained in lethal model mice have demonstrated the protective effect of aEv6-Fc. Thus, the nanobody and its modified derivative obtained in this study have shown potential protective value against Ebola virus.

8.
Acta Naturae ; 12(3): 114-123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33173601

RESUMO

The Middle East Respiratory Syndrome (MERS) is an acute inflammatory disease of the respiratory system caused by the MERS-CoV coronavirus. The mortality rate for MERS is about 34.5%. Due to its high mortality rate, the lack of therapeutic and prophylactic agents, and the continuing threat of the spread of MERS beyond its current confines, developing a vaccine is a pressing task, because vaccination would help limit the spread of MERS and reduce its death toll. We have developed a combined vector vaccine for the prevention of MERS based on recombinant human adenovirus serotypes 26 and 5. Studies of its immunogenicity have shown that vaccination of animals (mice and primates) induces a robust humoral immune response that lasts for at least six months. Studies of the cellular immune response in mice after vaccination showed the emergence of a specific CD4+ and CD8+ T cell response. A study of the vaccine protectivity conducted in a model of transgenic mice carrying the human DPP4 receptor gene showed that our vaccination protected 100% of the animals from the lethal infection caused by the MERS-CoV virus (MERS-CoV EMC/2012, 100LD50 per mouse). Studies of the safety and tolerability of the developed vaccine in rodents, rabbits, and primates showed a good safety profile and tolerance in animals; they revealed no contraindications for clinical testing.

9.
Vopr Virusol ; 64(3): 101-104, 2019.
Artigo em Russo | MEDLINE | ID: mdl-31622055

RESUMO

The mosquitoes of Aedes genus are the most important vector such arboviral diseases as dengue, yellow, Chikungunya, West Nile and Zika fevers. Work is currently in progress to control the transmission of agents of these diseases by forming of transgenic mosquitoes in order to altering the capacity of wild mosquitoes to support of virus replication. There are two main strategies of genetic control of mosquitoes population. Sterile Insect Technique (SIT), that mainly uses population suppression methods for making self-sustaining genetic systems and Release of insects carrying of a Dominant Lethal (RIDL) that uses mainly gene transfer methods for making of self-limiting genetic systems. The RIDL is more expensive, but it has some significant preferences, according compares with SIT. The field trials of genetic control methods are conducted in several countries from 2009 to present time. Genetic control, transgenic technologies to induce sterility, genetic elimination and stable transformation of Aedes mosquitoes are viewed in this review.


Assuntos
Aedes , Animais Geneticamente Modificados , Infecções por Arbovirus/prevenção & controle , Controle de Mosquitos , Mosquitos Vetores , Aedes/genética , Aedes/crescimento & desenvolvimento , Aedes/virologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/virologia , Infecções por Arbovirus/transmissão , Humanos , Mosquitos Vetores/genética , Mosquitos Vetores/crescimento & desenvolvimento
10.
Acta Naturae ; 11(1): 38-47, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024747

RESUMO

The Middle East respiratory syndrome coronavirus (MERS-CoV) was identified in 2012 during the first Middle East respiratory syndrome (MERS) outbreaks. MERS-CoV causes an acute lower-respiratory infection in humans, with a fatality rate of ~35.5%. Currently, there are no registered vaccines or means of therapeutic protection against MERS in the world. The MERS-CoV S glycoprotein plays the most important role in the viral life cycle (virus internalization). The S protein is an immunodominant antigen and the main target for neutralizing antibodies. In the present study, the immunogenicities of five different forms of the MERS-CoV S glycoprotein were compared: the full-length S glycoprotein, the full-length S glycoprotein with the transmembrane domain of the G glycoprotein of VSV (S-G), the receptor-binding domain (RBD) of the S glycoprotein, the membrane-fused RBD (the RBD fused with the transmembrane domain of the VSV G glycoprotein (RBD-G)), and the RBD fused with Fc of human IgG1 (RBD-Fc). Recombinant vectors based on human adenoviruses type 5 (rAd5) were used as delivery vehicles. Vaccination with all of the developed rAd5 vectors elicited a balanced Th1/Th2 response in mice. The most robust humoral immune response was induced after the animal had been vaccinated with the membrane-fused RBD (rAd5-RBD-G). Only immunization with membrane forms of the glycoprotein (rAd5-S, rAd5-S-G, and rAd5-RBD-G) elicited neutralizing antibodies among all vaccinated animals. The most significant cellular immune response was induced after vaccination of the animals with the full-length S (rAd5-S). These investigations suggest that the full-length S and the membrane form of the RBD (RBD-G) are the most promising vaccine candidates among all the studied forms of S glycoprotein.

11.
Ter Arkh ; 91(11): 98-104, 2019 Nov 15.
Artigo em Russo | MEDLINE | ID: mdl-32598619

RESUMO

The Ebola virus (member of Ebolavirus genus Filoviridae family) is the etiologic agent of extremely hazard human disease with high mortality rates (up to 90%). The most important components of spectrum of therapeutics for special prophylactic and current of disease, caused by Ebola virus, are prepares, based on virus specific antibodies (convalescent's plasma, geterologic immunoglobulins, monoclonal antibodies. The use of different class therapeutics, based on virus specific antibodies, the possible improvements of its composition and strategy of its application for special prophylactic and current of disease, caused by Ebola virus, are considered in this review.


Assuntos
Ebolavirus/imunologia , Doença pelo Vírus Ebola , Anticorpos Monoclonais , Anticorpos Antivirais , Humanos
12.
Vopr Virusol ; 63(5): 197-201, 2018.
Artigo em Russo | MEDLINE | ID: mdl-30550095

RESUMO

Тhе kingdom Archaea, as well as Bacteria, belongs to the overkingdom Prokaryota. Halophilic archaea (Halorubrum lacusprofundi) isolated from Antarctic saline lakes contain plasmids (pR1SE) that code proteins taking part in the formation of membranes of archaea vesicles. The molecular and biological properties of pR1SE and the peculiarity of its interaction with sensitive cells are considered in this article. The role of structural proteins coded by pR1S in the process of formation of vesicle membrane complex is paid special attention. Plasmid-containing archaea vesicles model some properties of viruses. Archaea plasmids can be viewed as possible ancestors of DNA-containing viruses.


Assuntos
DNA Viral/genética , Halobacteriales/genética , Halorubrum/genética , Vírus/genética , Regiões Antárticas , Archaea/genética , Archaea/virologia , Halorubrum/virologia , Lagos/microbiologia , Plasmídeos/genética , Tolerância ao Sal/genética
13.
Infect Genet Evol ; 63: 144-150, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29852294

RESUMO

Highly pathogenic avian influenza viruses (HPAIV) A(H5N8) of group B (Gochang1-like) have emerged in the Tyva Republic of eastern Russia in May 2016. Since November 2016, HPAIV A(H5N8) has spread throughout the European part of Russia. Thirty-one outbreaks were reported in domestic, wild and zoo birds in 2017. The present study aimed to perform a comparative analysis of new HPAIV A(H5N8) strains. Phylogenetic analysis revealed four genetically distinct subgroups in HPAIV A(H5N8) from the 2016-2017 season. Russian strains consisted of three subgroups with differences between isolates from Tyva, Siberia (Chany Lake), and the European part of Russia. Strains from the European part of Russia showed the beginnings of divergent evolution. Slight differences of the Voronezh strains were suggested by sensitivity to antiviral compounds. Testing for host-specific mutations in sequenced strains revealed the absence of mutations associated with possible increased tropism/virulence in mammalian species, including humans. Only one residue of polymerase basic-1, 13P, is discussed, because the L13P mutation increased complementary RNA synthesis in mammalian cells. We concluded that the evolution of HPAIV A(H5N8) is continuous. Surveillance in Russia revealed new cases of HPAIV A(H5N8) and led to the elaboration of prevention strategies, which should be implemented.


Assuntos
Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A Subtipo H5N8/patogenicidade , Influenza Aviária/virologia , Animais , Antivirais/farmacologia , Aves , Cães , Farmacorresistência Viral , Evolução Molecular , Influenza Aviária/epidemiologia , Células Madin Darby de Rim Canino , Mutação , Federação Russa/epidemiologia
14.
Klin Lab Diagn ; 63(6): 372-375, 2018.
Artigo em Russo | MEDLINE | ID: mdl-30702231

RESUMO

The reverse transcription - polymerase chain reaction method (RT-PCR) has leading position on diagnostic infections, caused by RNA-containing viruses. This method presents severe requirements to carrying out of everybody stages of analysis (extraction of nucleic acid, carry out reverse transcription, amplification of DNA). It is necessary to account the possibility of false positive or false negative results appearance. The use on RT-PCR only positive (PCS) and negative (NCS) control samples is insufficient for the control of stages of RNA extraction and reverse transcription. That is way there is necessity the construction of inner control sample (ICS) to control of these stages. The main goal of present is the ground of use genetic engineering constructions (GEC) as control samples (PCS and ICS) on evaluation of diagnostic kits for reveal of RNA of hazard and extremely hazard agents of virus infections by RT-PCR. The vector recombinant plasmids, containing the insertion of cDNA of agent´s genomic RNA are used as PCS, RNA was packed in membrane protein of MS2 bacteriophage, is used as ICS. It is demonstrated that ICS does no influence on sensitivity of RT-PCR both for use of native agents and for use of synthetic nucleic acids of Ebola, Marburg, Lassa, Machupo, Venezuelan encephalitis equine (VEE), Rift Valley fever and rabies viruses. The possibility of use of PCS and ICS for standardization of diagnostic kits is discussed.


Assuntos
RNA Viral/análise , Kit de Reagentes para Diagnóstico/normas , Padrões de Referência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Animais , Engenharia Genética , Sensibilidade e Especificidade
15.
Vopr Virusol ; 63(2): 53-57, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36494921

RESUMO

A new taxon of the subfamily Chordopoxvirinae that may represent a new genus of smallpox viruses is considered in this review. The distribution of gray squirrels (Sciurus carolinensis) throughout the UK during the 20th century and the decrease in the population of red squirrels (Sciurus vulgaris) is one of the most well-documented cases of ecological change of local fauna by the introduced species. The tendency to expand the distribution of the smallpox virus from Great Britain to the Western part of Europe has been noted. The genetic peculiarities of the genome of the poxvirus of squirrels, which determine its biological properties, as well as evolutionary relationships with other poxviruses, are separately described. Determination of the size of the genome by restriction analysis, sequencing of the whole genome, determination of the content of G/C nucleotide pairs, and functional mapping of the majority of genes made it possible to construct a phylogenetic tree. Phylogenetic analysis shows that this is a new representative of the subfamily Chordоpoxvirinae located between the viruses of the molluscum contagiosum and parapoxviruses. Serological and molecular biological methods are used to reveal and identify the causative agent of smallpox. The use of electron microscopy is limited in grey squirrels, due to the absence of organ damage and reproduction of the virus. Identification of the DNA of the causative agent of poxvirus of squirrels based on the use of different types of polymerase chain reaction (nested and in real time) overcomes all these limitations.

16.
Vopr Virusol ; 63(2): 58-61, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36494922

RESUMO

The data on a recently revealed novel filovirus (Lloviu virus, family Filoviridae, genera Cuevavirus) in Europe are viewed in this issue. The molecular-biological properties of genome fragments of Lloviu virus were isolated from perished bats (Miniopterus sсhreibersii). Because infectious Lloviu virus has not been isolated yet, the capacity of virus to infect cells of different species and its potential to cause disease in humans is unclear. The recombinant vectors (vesicular stomatitis virus and plasmids) expressing structural proteins of Lloviu virus were used to study different elements of the virus. The question of interaction of structural proteins of Lloviu virus expressed by recombinant vectors with receptors of bat and human cells is considered. The possibility of pathogenicity of the novel agent for humans is considered. The conclusion is made about the necessity of continuous epidemical and epizootical monitoring of the new filovirus infection.

17.
Vopr Virusol ; 63(1): 5-10, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36494991

RESUMO

The brief review is devoted to description of the discovery of giant viruses belonging to the families of Mimiviridae and Marseilleviridae, as well as unassigned genera Pithoviruses, Pandoravirus, and Molliviruses. The review presents issues of their origin, evolution, and molecular-biological characteristics.

18.
Acta Naturae ; 9(3): 4-11, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104771

RESUMO

The Ebola virus disease (EVD) is one of the most dangerous infections affecting humans and animals. The first EVD outbreaks occurred in 1976 in Sudan and Zaire. Since then, more than 20 outbreaks have occurred; the largest of which (2014-2016) evolved into an epidemic in West Africa and claimed the lives of more than 11,000 people. Although vaccination is the most effective way to prevent epidemics, there was no licensed vaccine for EVD at the beginning of the latest outbreak. The development of the first vaccines for EVD started in 1980 and has come a long technological way, from inactivated to genetically engineered vaccines based on recombinant viral vectors. This review focuses on virus-vectored Ebola vaccines that have demonstrated the greatest efficacy in preclinical trials and are currently under different phases of clinical trial. Particular attention is paid to the mechanisms of immune response development, which are important for protection from EVD, and the key vaccine parameters necessary for inducing long-term protective immunity against EVD.

19.
Hum Vaccin Immunother ; 13(3): 613-620, 2017 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-28152326

RESUMO

Ebola hemorrhagic fever, also known as Ebola virus disease or EVD, is one of the most dangerous viral diseases in humans and animals. In this open-label, dose-escalation clinical trial, we assessed the safety, side effects, and immunogenicity of a novel, heterologous prime-boost vaccine against Ebola, which was administered in 2 doses to 84 healthy adults of both sexes between 18 and 55 years. The vaccine consists of live-attenuated recombinant vesicular stomatitis virus (VSV) and adenovirus serotype-5 (Ad5) expressing Ebola envelope glycoprotein. The most common adverse event was pain at the injection site, although no serious adverse events were reported. The vaccine did not significantly impact blood, urine, and immune indices. Seroconversion rate was 100 %. Antigen-specific IgG geometric mean titer at day 42 was 3,277 (95 % confidence interval 2,401-4,473) in volunteers immunized at full dose. Neutralizing antibodies were detected in 93.1 % of volunteers immunized at full dose, with geometric mean titer 20. Antigen-specific response in peripheral blood mononuclear cells was also detected in 100 % of participants, as well as in CD4+ and CD8+ T cells in 82.8 % and 58.6 % of participants vaccinated at full dose, respectively. The data indicate that the vaccine is safe and induces strong humoral and cellular immune response in up to 100 % of healthy adult volunteers, and provide a rationale for testing efficacy in Phase III trials. Indeed, the strong immune response to the vaccine may elicit long-term protection. This trial was registered with grls.rosminzdrav.ru (No. 495*), and with zakupki.gov.ru (No. 0373100043215000055).


Assuntos
Vacinas contra Ebola/imunologia , Voluntários Saudáveis , Doença pelo Vírus Ebola/prevenção & controle , Adenoviridae/genética , Adolescente , Adulto , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Portadores de Fármacos/administração & dosagem , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Vacinas contra Ebola/administração & dosagem , Feminino , Humanos , Imunoglobulina G/sangue , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Dor/induzido quimicamente , Dor/epidemiologia , Federação Russa , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/imunologia , Vesiculovirus/genética , Voluntários , Adulto Jovem
20.
Vopr Virusol ; 62(2): 60-65, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36494929

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by a new virus (SFTS virus) reported to be endemic to central and northeastern parts of China. SFTS virus, which is classified into the genus Phlebovirus (the Bunyaviridae family), is suspected to be a tick-borne virus owing to evidence in two species of ticks: Haemaphysalis longicornis and Rhipicephalus microplus. SFTS virus is detected among many species of domestic animals in China. The clinical symptoms of SFTS include fever, thrombocytopenia, leucocytopenia, gastrointestinal symptoms, neural symptoms, bleeding tendency. The fatality rate of SFTS is 6-30%. Person-to-person transmission of SFTS virus is possible through blood contact. Clinical and epidemiological studies of SFTS, the cases of SFTS outside China, person-to-person transmission of SFTS virus, evolutionary and molecular analysis of the emergent SFTS virus, and risk assessment of human infection with a novel phlebovirus are considered in this review.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...