Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2316723121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38478686

RESUMO

Many environmental and industrial processes depend on how fluids displace each other in porous materials. However, the flow dynamics that govern this process are still poorly understood, hampered by the lack of methods to measure flows in optically opaque, microscopic geometries. We introduce a 4D microvelocimetry method based on high-resolution X-ray computed tomography with fast imaging rates (up to 4 Hz). We use this to measure flow fields during unsteady-state drainage, injecting a viscous fluid into rock and filter samples. This provides experimental insight into the nonequilibrium energy dynamics of this process. We show that fluid displacements convert surface energy into kinetic energy. The latter corresponds to velocity perturbations in the pore-scale flow field behind the invading fluid front, reaching local velocities more than 40 times faster than the constant pump rate. The characteristic length scale of these perturbations exceeds the characteristic pore size by more than an order of magnitude. These flow field observations suggest that nonlocal dynamic effects may be long-ranged even at low capillary numbers, impacting the local viscous-capillary force balance and the representative elementary volume. Furthermore, the velocity perturbations can enhance unsaturated dispersive mixing and colloid transport and yet, are not accounted for in current models. Overall, this work shows that 4D X-ray velocimetry opens the way to solve long-standing fundamental questions regarding flow and transport in porous materials, underlying models of, e.g., groundwater pollution remediation and subsurface storage of CO2 and hydrogen.

2.
Sci Rep ; 13(1): 16806, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798425

RESUMO

The occurrence of wellbore mechanical failure is a consequence of the interaction among factors such as in situ stress, rock strength, and engineering procedures. The process of hydrocarbons production, causing reduction of pore pressure, alters the effective stresses in the vicinity of a borehole, leading to borehole instability issues. Estimating the rocks' elastic modulus and compressive strength is essential to comprehend the rock matrix's mechanical response during drilling and production operations. This study aimed to assess the practicality of Diammonium Hydrogen Phosphate (DAP) application as a chemical for strengthening chalk in hydrocarbon reservoirs, to make it resistant to high stresses and failure during drilling and production. The mechanical and physical properties of Austin chalk rock samples treated with DAP under mimicked reservoir conditions were studied. The results showed that DAP is a highly effective carbonate rock consolidating agent that improves the mechanical strength of the chalk. Compressive test measurements conducted on rocks treated at two different temperatures (ambient and 50 °C) showed that DAP effectively strengthened the rock matrix, resulting in an increase in its compressive strength (22-24%) and elastic modulus (up to 115%) compared to the untreated sample. The favorable outcomes of this research suggest that the DAP solution holds promise as a consolidation agent in hydrocarbon reservoirs. This contributes to the advancement of knowledge regarding effective strategies for mitigating mechanical failures of the wellbore during drilling and production.

3.
J Colloid Interface Sci ; 615: 196-205, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35134477

RESUMO

HYPOTHESIS: The emulsification of water and crude oil is typically examined and optimized in test tubes by optical means, that is, mixed under turbulent conditions and detected outside the porous medium in equilibrium. In this study, we investigate the rather complex case of crude oil emulsification by alkaline solutions to assess whether the classical phase behavior experiments are representative of the emulsification under laminar flow conditions in porous media. EXPERIMENTS: We characterized the phase equilibrium in the test tubes through X-ray attenuation in micro-X-ray computed tomography (µCT). Moreover, we showed that for these systems, the conventional qualitative optical inspection leads to considerable misinterpretation. X-ray attenuation ensures a quantitative analysis directly comparable to results from µCT-based core-flood experiments, where phase mixing occurs in porous media flow. The study was complemented with microfluidic experiments providing additional high-resolution information on emulsion phases. FINDINGS: We conclusively show that in the complex in situ saponification of crude oil by alkaline flooding, (a) the emulsifications in test tubes and in porous media flow are comparable, considering the displacement process in the latter; (b) a minimum emulsion volume with balanced compositions leads to optimal oil recovery in µCT-based and conventional core flooding and in microfluidics.


Assuntos
Petróleo , Emulsões , Porosidade , Água
4.
J Colloid Interface Sci ; 608(Pt 1): 1064-1073, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34785454

RESUMO

HYPOTHESIS: While surfactant solutions mobilize residual oil under optimal conditions by lowering the water-oil interfacial tension, emulsion phases outside of the optimum tend to be immobile. How are mobility and texture of such phases related, and how can the stability of these phases be understood? Can non-optimized surfactant solutions improve displacement processes through mobility control? EXPERIMENT: Emulsification and miscibility during surfactant flooding were investigated in microfluidics with generic oil and surfactant solutions. The salt concentration was varied in an exceptionally wide range across the optimal displacement conditions. The resulting emulsion textures were characterized in situ by optical and fluorescence microscopy and ex situ visually and by Small-Angle X-ray Scattering. FINDINGS: During displacement, oil is increasingly solubilized and transported in a phase with a foam-like texture that develops from a droplet traffic flow. The extent and stability of these emulsion phases depend on the salinity and surfactant efficiency. The similarity with textures of classic foam phases is used to hypothesize the mechanisms that stabilize such macroemulsions in porous media. The observed microscopic displacement mechanisms can be traced back to foam formation, quality and transport. The resulting phases are of particular interest for mobility control during surfactant flooding, which, however, requires further investigation.


Assuntos
Tensoativos , Água , Emulsões , Porosidade , Tensão Superficial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...