Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833689

RESUMO

Spin transition (ST) materials are attractive for developing photoswitchable devices, but their slow material transformations limit device applications. Size reduction could enable faster switching, but the photoinduced dynamics at the nanoscale remains poorly understood. Here, we report a femtosecond optical pump multimodal X-ray probe study of polymeric nanorods. Simultaneously tracking the ST order parameter with X-ray emission spectroscopy and structure with X-ray diffraction, we observe photodoping of the low-spin-lattice within ∼150 fs. Above a ∼16% photodoping threshold, the transition to the high-spin phase occurs following an incubation period assigned to vibrational energy redistribution within the nanorods activating the molecular spin switching. Above ∼60% photodoping, the incubation period disappears, and the transition completes within ∼50 ps, preceded by the elastic nanorod expansion in response to the photodoping. These results support the feasibility of ST material-based GHz optical switching applications.

2.
Environ Sci Technol ; 58(13): 5952-5962, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38506754

RESUMO

The presence of oxyanions, such as nitrate (NO3-) and phosphate (PO43-), regulates the nucleation and growth of goethite (Gt) and hematite (Hm) during the transformation of ferrihydrite (Fh). Our previous studies showed that oxyanion surface complexes control the rate and pathway of Fh transformation to Gt and Hm. However, how oxyanion surface complexes control the mechanism of Gt and Hm nucleation and growth during the Fh transformation is still unclear. We used synchrotron scattering methods and cryogenic transmission electron microscopy to investigate the effects of NO3- outer-sphere complexes and PO43- inner-sphere complexes on the mechanism of Gt and Hm formation from Fh. Our TEM results indicated that Gt particles form through a two-step model in which Fh particles first transform to Gt nanoparticles and then crystallographically align and grow to larger particles by oriented attachment (OA). In contrast, for the formation of Hm, imaging shows that Fh particles first aggregate and then transform to Hm through interface nucleation. This is consistent with our X-ray scattering results, which demonstrate that NO3- outer-sphere and PO43- inner-sphere complexes promote the formation of Gt and Hm, respectively. These results have implications for understanding the coupled interactions of oxyanions and iron oxy-hydroxides in Earth-surface environments.


Assuntos
Compostos Férricos , Compostos de Ferro , Minerais , Adsorção
3.
IUCrJ ; 11(Pt 1): 120-128, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38133556

RESUMO

The application of grazing-incidence total X-ray scattering (GITXS) for pair distribution function (PDF) analysis using >50 keV X-rays from synchrotron light sources has created new opportunities for structural characterization of supported thin films with high resolution. Compared with grazing-incidence wide-angle X-ray scattering, which is only useful for highly ordered materials, GITXS/PDFs expand such analysis to largely disordered or nanostructured materials by examining the atomic pair correlations dependent on the direction relative to the surface of the supporting substrate. A characterization of nanocrystalline In2O3-derived thin films is presented here with in-plane-isotropic and out-of-plane-anisotropic orientational ordering of the atomic structure, each synthesized using different techniques. The atomic orientations of such films are known to vary based on the synthetic conditions. Here, an azimuthal orientational analysis of these films using GITXS with a single incident angle is shown to resolve the markedly different orientations of the atomic structures with respect to the planar support and the different degrees of long-range order, and hence, the terminal surface chemistries. It is anticipated that orientational analysis of GITXS/PDF data will offer opportunities to extend structural analyses of thin films by providing a means to qualitatively determine the major atomic orientation within nanocrystalline and, eventually, non-crystalline films.

4.
J Am Chem Soc ; 145(43): 23739-23754, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37844155

RESUMO

Introducing compositional or structural disorder within crystalline solid electrolytes is a common strategy for increasing their ionic conductivity. (M,Sn)F2 fluorites have previously been proposed to exhibit two forms of disorder within their cationic host frameworks: occupational disorder from randomly distributed M and Sn cations and orientational disorder from Sn(II) stereoactive lone pairs. Here, we characterize the structure and fluoride-ion dynamics of cubic BaSnF4, using a combination of experimental and computational techniques. Rietveld refinement of the X-ray diffraction (XRD) data confirms an average fluorite structure with {Ba,Sn} cation disorder, and the 119Sn Mössbauer spectrum demonstrates the presence of stereoactive Sn(II) lone pairs. X-ray total-scattering PDF analysis and ab initio molecular dynamics simulations reveal a complex local structure with a high degree of intrinsic fluoride-ion disorder, where 1/3 of fluoride ions occupy octahedral "interstitial" sites: this fluoride-ion disorder is a consequence of repulsion between Sn lone pairs and fluoride ions that destabilizes Sn-coordinated tetrahedral fluoride-ion sites. Variable-temperature 19F NMR experiments and analysis of our molecular dynamics simulations reveal highly inhomogeneous fluoride-ion dynamics, with fluoride ions in Sn-rich local environments significantly more mobile than those in Ba-rich environments. Our simulations also reveal dynamical reorientation of the Sn lone pairs that is biased by the local cation configuration and coupled to the local fluoride-ion dynamics. We end by discussing the effect of host-framework disorder on long-range diffusion pathways in cubic BaSnF4.

5.
J Synchrotron Radiat ; 30(Pt 4): 855, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37233736

RESUMO

The name of an author in the article by Weng et al. (2023) [J. Synchrotron Rad. 30, 546-554] is corrected.

6.
J Synchrotron Radiat ; 30(Pt 3): 546-554, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36897395

RESUMO

Flat-field calibration of X-ray area detectors is a challenge due to the inability to generate an X-ray flat-field at the selected photon energy the beamline operates at, which has a strong influence on the measurement behavior of the detector. A method is presented in which a simulated flat-field correction is calculated without flat-field measurements. Instead, a series of quick scattering measurements from an amorphous scatterer is used to calculate a flat-field response. The ability to rapidly obtain a flat-field response allows for recalibration of an X-ray detector as needed without significant expenditure of either time or effort. Area detectors on the beamlines used, such as the Pilatus 2M CdTe, PE XRD1621 and Varex XRD 4343CT, were found to have detector responses that drift slightly over timescales of several weeks or after exposure to high photon flux, suggesting the need to more frequently recalibrate with a new flat-field correction map.

7.
Chemistry ; 29(31): e202203551, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-36646645

RESUMO

We communicate a feasibility study for high-resolution structural characterization of biomacromolecules in aqueous solution from X-ray scattering experiments measured over a range of scattering vectors (q) that is approximately two orders of magnitude wider than used previously for such systems. Scattering data with such an extended q-range enables the recovery of the underlying real-space atomic pair distribution function, which facilitates structure determination. We demonstrate the potential of this method for biomacromolecules using several types of cyclodextrins (CD) as model systems. We successfully identified deviations of the tilting angles for the glycosidic units in CDs in aqueous solutions relative to their values in the crystalline forms of these molecules. Such level of structural detail is inaccessible from standard small angle scattering measurements. Our results call for further exploration of ultra-wide-angle X-ray scattering measurements for biomacromolecules.

8.
Proc Natl Acad Sci U S A ; 119(49): e2212802119, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36454748

RESUMO

Ni-rich layered oxides as high-capacity battery cathodes suffer from degradation at high voltages. We utilize a dry surface modification method, mechanofusion (MF), to achieve enhanced battery stability. The simplicity, high yield, and flexibility make it cost-effective and highly attractive for processing at the industrial scale. The underlying mechanisms responsible for performance improvement are unveiled by a systematic study combining multiple probes, e.g., 3D nano-tomography, spectroscopic imaging, in situ synchrotron diffraction, and finite element analysis (FEA). MF affects the bulk crystallography by introducing partially disordered structure, microstrain, and local lattice variation. Furthermore, the crack initiation and propagation pattern during delithiation are regulated and the overall mechanical fracture is reduced after such surface coating. We validate that MF can alter the bulk charging pathways. Such a synergic effect between surface modification and bulk charge distribution is fundamentally important for designing next-generation battery cathode materials.

9.
Environ Sci Technol ; 56(22): 15672-15684, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36219790

RESUMO

The rate and pathway of ferrihydrite (Fh) transformation at oxic conditions to more stable products is controlled largely by temperature, pH, and the presence of other ions in the system such as nitrate (NO3-), sulfate (SO42-), and arsenate (AsO43-). Although the mechanism of Fh transformation and oxyanion complexation have been separately studied, the effect of surface complex type and strength on the rate and pathway remains only partly understood. We have developed a kinetic model that describes the effects of surface complex type and strength on Fh transformation to goethite (Gt) and hematite (Hm). Two sets of oxyanion-adsorbed Fh samples were prepared, nonbuffered and buffered, aged at 70 ± 1.5 °C, and then characterized using synchrotron X-ray scattering methods and wet chemical analysis. Kinetic modeling showed a significant decrease in the rate of Fh transformation for oxyanion surface complexes dominated by strong inner-sphere (SO42- and AsO43-) versus weak outer-sphere (NO3-) bonding and the control. The results also showed that the Fh transformation pathway is influenced by the type of surface complex such that with increasing strength of bonding, a smaller fraction of Gt forms compared with Hm. These findings are important for understanding and predicting the role of Fh in controlling the transport and fate of metal and metalloid oxyanions in natural and applied systems.


Assuntos
Compostos Férricos , Minerais , Cinética , Adsorção , Compostos Férricos/química , Minerais/química
10.
Nano Lett ; 21(23): 9997-10005, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34813330

RESUMO

The capacity degredation in layered Ni-rich LiNixCoyMnzO2 (x ≥ 0.8) cathode largely originated from drastic surface reactions and intergranular cracks in polycrystalline particles. Herein, we report a highly stable single-crystal LiNi0.83Co0.12Mn0.05O2 cathode material, which can deliver a high specific capacity (∼209 mAh g-1 at 0.1 C, 2.8-4.3 V) and meanwhile display excellent cycling stability (>96% retention for 100 cycles and >93% for 200 cycles). By a combination of in situ X-ray diffraction and in situ pair distribution function analysis, an intermediate monoclinic distortion and irregular H3 stack are revealed in the single crystals upon charging-discharging processes. These structural changes might be driven by unique Li-intercalation kinetics in single crystals, which enables an additional strain buffer to reduce the cracks and thereby ensure the high cycling stability.

11.
Chem Mater ; 33(14): 5652-5667, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34483480

RESUMO

Solid electrolytes are crucial for next-generation solid-state batteries, and Na3PS4 is one of the most promising Na+ conductors for such applications, despite outstanding questions regarding its structural polymorphs. In this contribution, we present a detailed investigation of the evolution in structure and dynamics of Na3PS4 over a wide temperature range 30 < T < 600 °C through combined experimental-computational analysis. Although Bragg diffraction experiments indicate a second-order phase transition from the tetragonal ground state (α, P4̅21 c) to the cubic polymorph (ß, I4̅3m) above ∼250 °C, pair distribution function analysis in real space and Raman spectroscopy indicate remnants of a tetragonal character in the range 250 < T < 500 °C, which we attribute to dynamic local tetragonal distortions. The first-order phase transition to the mesophasic high-temperature polymorph (γ, Fddd) is associated with a sharp volume increase and the onset of liquid-like dynamics for sodium-cations (translational) and thiophosphate-polyanions (rotational) evident by inelastic neutron and Raman spectroscopies, as well as pair-distribution function and molecular dynamics analyses. These results shed light on the rich polymorphism of Na3PS4 and are relevant for a range host of high-performance materials deriving from the Na3PS4 structural archetype.

12.
Inorg Chem ; 60(10): 7217-7227, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33956446

RESUMO

The effect of crystallizing solution chemistry on the chemistry of subsequently as-grown materials was investigated for Mo-substituted iron oxides prepared by thermally activated co-precipitation. In the presence of Mo ions, we find that varying the oxidation state of the iron precursor from Fe(II) to Fe(III) causes a progressive loss of atomic long-range order with the stabilization of 2-4 nm particles for the sample prepared with Fe(III). The oxidation state of the Fe precursor also affects the distribution of Fe and Mo cations within the spinel structure. Increasing the Fe precursor oxidation state gives decreased Fe-ion occupation and increased Mo-ion occupation of tetrahedral sites, as revealed by the extended X-ray absorption fine structure. The stabilization of Mo within tetrahedral sites appears to be unexpected, considering the octahedral preferred coordination number of Mo(VI). The analysis of the atomic structure of the sample prepared with Fe(III) indicates a local ordering of vacancies and that the occupation of tetrahedral sites by Mo induces a contraction of the interatomic distances within the polyhedra as compared to Fe atoms. Moreover, the occupancy of Mo into the thermodynamic site preference of a Mo dopant in Fe2O3 assessed by density functional theory calculations points to a stronger preference for Mo substitution at octahedral sites. Hence, we suggest that the synthetized compound is thermodynamically metastable, that is, kinetically trapped. Such a state is suggested to be a consequence of the tetrahedral site occupation by Mo ions. The population of these sites, known to be reactive sites enabling particle growth, is concomitant with the stabilization of very small particles. We confirmed our hypothesis by using a blank experiment without Mo ions, further supporting the impact of tetrahedral Mo ions on the growth of iron oxide nanoparticles. Our findings provide new insights into the relationships between the Fe-chemistry of the crystallizing solution and the structural features of the as-grown Mo-substituted Fe-oxide materials.

13.
Phys Chem Chem Phys ; 23(17): 10498-10508, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33899859

RESUMO

Topochemical reactions involving ionic exchange have been used to assess a large number of metastable compositions, particularly in layered metal oxides. This method encompasses complex reactions that are poorly explored, yet are of prime importance to understand and control the materials' properties. In this work, we embark on investigating the reactions involved during the ionic exchange between a layered Na-titanate (lepidocrocite-type structure) and an acidic solution (HCl), leading to a protonic (H3O+) titanate (trititanate structure). The reactions involve an ionic exchange provoking a structural change from the lepidocrocite-type to the trititanate structure as shown by real-space refinements of ex situ pair distribution function data. Mobile Na+ ions are exchanged by hydronium ions inducing high proton mobility in the final structure. Moreover, the reaction was followed by ex situ23Na and 1H solid-state MAS NMR which allowed, among other things, confirming that the Na+ ions are in the interlayer space and specifying their local environment. Strikingly, the ionic exchange reaction induces progressive exfoliation of the Na-titanate particles leading to 2-5 nm thin elongated crystallites. To further understand the different steps associated with the ionic exchange, the evolution of the electrolytic conductivity, using conductimetric titration, has been monitored upon HCl addition, enabling characterization of the intercalation(H+)/de-intercalation(Na+) reactions and assessing kinetic parameters. Accordingly, it is hypothesized that the exfoliation of the particles is due to the accumulation of charges at the particle level in relation to the rapid intercalation of protons. This work provides novel insights into ionic exchange reactions involved in layered oxide compounds.

14.
ACS Nano ; 14(11): 14846-14860, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33170644

RESUMO

Sequential infiltration synthesis (SIS) is a route to the precision deposition of inorganic solids in analogy to atomic layer deposition but occurs within (vs upon) a soft material template. SIS has enabled exquisite nanoscale morphological complexity in various oxides through selective nucleation in block copolymers templates. However, the earliest stages of SIS growth remain unresolved, including the atomic structure of nuclei and the evolution of local coordination environments, before and after polymer template removal. We employed In K-edge extended X-ray absorption fine structure and atomic pair distribution function analysis of high-energy X-ray scattering to unravel (1) the structural evolution of InOxHy clusters inside a poly(methyl methacrylate) (PMMA) host matrix and (2) the formation of porous In2O3 solids (obtained after annealing) as a function of SIS cycle number. Early SIS cycles result in InOxHy cluster growth with high aspect ratio, followed by the formation of a three-dimensional network with additional SIS cycles. That the atomic structures of the InOxHy clusters can be modeled as multinuclear clusters with bonding patterns related to those in In2O3 and In(OH)3 crystal structures suggests that SIS may be an efficient route to 3D arrays of discrete-atom-number clusters. Annealing the mixed inorganic/polymer films in air removes the PMMA template and consolidates the as-grown clusters into cubic In2O3 nanocrystals with structural details that also depend on SIS cycle number.

15.
J Am Chem Soc ; 142(43): 18422-18436, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33054192

RESUMO

Fast-ion conductors are critical to the development of solid-state batteries. The effects of mechanochemical synthesis that lead to increased ionic conductivity in an archetypical sodium-ion conductor Na3PS4 are not fully understood. We present here a comprehensive analysis based on diffraction (Bragg and pair distribution function), spectroscopy (impedance, Raman, NMR and INS), and ab initio simulations aimed at elucidating the synthesis-property relationships in Na3PS4. We consolidate previously reported interpretations regarding the local structure of ball-milled samples, underlining the sodium disorder and showing that a local tetragonal framework more accurately describes the structure than the originally proposed cubic one. Through variable-pressure impedance spectroscopy measurements, we report for the first time the activation volume for Na+ migration in Na3PS4, which is ∼30% higher for the ball-milled samples. Moreover, we show that the effect of ball-milling on increasing the ionic conductivity of Na3PS4 to ∼10-4 S/cm can be reproduced by applying external pressure on a sample from conventional high-temperature ceramic synthesis. We conclude that the key effects of mechanochemical synthesis on the properties of solid electrolytes can be analyzed and understood in terms of pressure, strain, and activation volume.

16.
Materials (Basel) ; 13(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947936

RESUMO

This work aimed to determine the effect of various amounts of P admixtures in synthetic ferrihydrite on its thermal stability, transformation processes, and the properties of the products, at a broad range of temperatures up to 1000 °C. A detailed study was conducted using a series of synthetic ferrihydrites Fe5HO8·4H2O doped with phosphates at P/Fe molar ratios of 0.2, 0.5, and 1.0. Ferrihydrite was synthesized by a reaction of Fe2(SO4)3 with 1 M KOH at room temperature in the presence of K2HPO4 at pH 8.2. The products of the synthesis and the products of heating were characterized at various stages of transformation by using differential thermal analysis accompanied with X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy-energy dispersive X-ray spectroscopy. Coprecipitation of P with ferrihydrite results in the formation of P-doped 2-line ferrihydrite. A high P content reduces crystallinity. Phosphate significantly inhibits the thermal transformation processes. The temperature of thermal transformation increases from below 550 to 710-750 °C. Formation of intermediate maghemite and Fe-phosphates, is observed. The product of heating up to 1000 °C contains hematite associated with rodolicoite FePO4 and grattarolaite Fe3PO7. Higher P content greatly increases the thermal stability and transformation temperature of rodolicoite as well.

17.
Angew Chem Int Ed Engl ; 59(43): 19247-19253, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32649793

RESUMO

Aluminium batteries constitute a safe and sustainable high-energy-density electrochemical energy-storage solution. Viable Al-ion batteries require suitable electrode materials that can readily intercalate high-charge Al3+ ions. Here, we investigate the Al3+ intercalation chemistry of anatase TiO2 and how chemical modifications influence the accommodation of Al3+ ions. We use fluoride- and hydroxide-doping to generate high concentrations of titanium vacancies. The coexistence of these hetero-anions and titanium vacancies leads to a complex insertion mechanism, attributed to three distinct types of host sites: native interstitial sites, single vacancy sites, and paired vacancy sites. We demonstrate that Al3+ induces a strong local distortion within the modified TiO2 structure, which affects the insertion properties of the neighbouring host sites. Overall, specific structural features induced by the intercalation of highly polarising Al3+ ions should be considered when designing new electrode materials for polyvalent batteries.

18.
J Am Chem Soc ; 142(5): 2506-2513, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31913621

RESUMO

Mn oxides are among the most ubiquitous minerals on Earth and play critical roles in numerous elemental cycles in biotic/abiotic loops as the key redox center. Yet, it has long puzzled geochemists why the laboratory synthesis of todorokite, a tunnel-structured Mn oxide, is extremely difficult while it is the dominant form over other tunneled phases in low-temperature natural environments. This study employs a novel electrochemical method to mimic the cyclic redox reactions occurring over long geological time scales in an accelerated manner. The results revealed that the kinetics and electron flux of the cyclic redox reaction are key to the layer-to-tunnel structure transformation of Mn oxides, provided new insights for natural biotic and abiotic redox reactions, and explained the dominance of todorokite in nature.

19.
Inorg Chem ; 58(21): 14389-14402, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31625736

RESUMO

Cation ordering/disordering in spinel oxides plays an essential role in the rich physical and chemical properties which are hallmarks of the structural archetype. A variety of cation-ordering motifs have been reported for spinel oxides with multiple cations residing on the octahedral site (or B-site). This has attracted tremendous attention from both experimental and theoretical communities in the last few decades. However, no unified view has been reached, presumably due to the richness of cation species and corresponding complex arrangements emergent in this large family of compounds. In this report, local cation-ordered ground states of (inverse) spinel oxides with two different cations on the octahedral site have been thoroughly investigated using neutron and X-ray total scattering, and a comprehensive theory has been proposed to explain the commonly observed cation-ordered polymorphs. It is found that a cation-zigzag-ordered structure (space group P4122) is the ground state for inverse spinel oxides with a pure or strong ionic lattice, while a cation-linear-ordered arrangement (space group Imma) emerges when one of the B-site cations forms very strong directional covalent bonds with lattice oxygen. The degree and length scale of cation ordering is strongly correlated with the charge and ionic radius difference between the two octahedral site cations. More complicated cation ordering schemes can be formed when there is a concomitant charge and orbital ordering which fall on a similar energy scale. This can lead to the formation of orbital-driven cation clusters or the broad concept of "molecules" in solid- state compounds. It is expected these findings will help to better understand the observed physical properties of spinel oxides and thus facilitate design strategies for improved functional materials.

20.
Acta Crystallogr A Found Adv ; 75(Pt 5): 758-765, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31475919

RESUMO

Structural investigations of amorphous and nanocrystalline phases forming in solution are historically challenging. Few methods are capable of in situ atomic structural analysis and rigorous control of the system. A mixed-flow reactor (MFR) is used for total X-ray scattering experiments to examine the short- and long-range structure of phases in situ with pair distribution function (PDF) analysis. The adaptable experimental setup enables data collection for a range of different system chemistries, initial supersaturations and residence times. The age of the sample during analysis is controlled by adjusting the flow rate. Faster rates allow for younger samples to be examined, but if flow is too fast not enough data are acquired to average out excess signal noise. Slower flow rates form older samples, but at very slow speeds particles settle and block flow, clogging the system. Proper background collection and subtraction is critical for data optimization. Overall, this MFR method is an ideal scheme for analyzing the in situ structures of phases that form during crystal growth in solution. As a proof of concept, high-resolution total X-ray scattering data of amorphous and crystalline calcium phosphates and amorphous calcium carbonate were collected for PDF analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...