Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Metabolism ; 106: 154191, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32112822

RESUMO

BACKGROUND: Low-density lipoprotein receptor-related protein 1 (LRP1) plays a key role in fatty acid metabolism and glucose homeostasis. In the context of dyslipemia, LRP1 is upregulated in the heart. Our aim was to evaluate the impact of cardiomyocyte LRP1 deficiency on high fat diet (HFD)-induced cardiac and metabolic alterations, and to explore the potential mechanisms involved. METHODS: We used TnT-iCre transgenic mice with thoroughly tested suitability to delete genes exclusively in cardiomyocytes to generate an experimental mouse model with conditional Lrp1 deficiency in cardiomyocytes (TNT-iCre+-LRP1flox/flox). FINDINGS: Mice with Lrp1-deficient cardiomyocytes (cm-Lrp1-/-) have a normal cardiac function combined with a favorable metabolic phenotype against HFD-induced glucose intolerance and obesity. Glucose intolerance protection was linked to higher hepatic fatty acid oxidation (FAO), lower liver steatosis and increased whole-body energy expenditure. Proteomic studies of the heart revealed decreased levels of cardiac pro-atrial natriuretic peptide (pro-ANP), which was parallel to higher ANP circulating levels. cm-Lrp1-/- mice showed ANP signaling activation that was linked to increased fatty acid (FA) uptake and increased AMPK/ ACC phosphorylation in the liver. Natriuretic peptide receptor A (NPR-A) antagonist completely abolished ANP signaling and metabolic protection in cm-Lrp1-/- mice. CONCLUSIONS: These results indicate that an ANP-dependent axis controlled by cardiac LRP1 levels modulates AMPK activity in the liver, energy homeostasis and whole-body metabolism.


Assuntos
Resistência à Insulina/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Miócitos Cardíacos/metabolismo , Obesidade/genética , Adenilato Quinase/metabolismo , Animais , Fator Natriurético Atrial/metabolismo , Células Cultivadas , Dieta Hiperlipídica , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Metabolismo dos Lipídeos/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Miócitos Cardíacos/patologia , Obesidade/metabolismo , Obesidade/patologia
2.
Theranostics ; 10(7): 3263-3280, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194867

RESUMO

Background: The LRP1 (CR9) domain and, in particular, the sequence Gly1127-Cys1140 (P3) plays a critical role in the binding and internalization of aggregated LDL (agLDL). We aimed to evaluate whether immunization with P3 reduces high-fat diet (HFD)-induced atherosclerosis. Methods: Female New Zealand White (NZW) rabbits were immunized with a primary injection and four reminder doses (R1-R4) of IrP (irrelevant peptide) or P3 conjugated to the carrier. IrP and P3-immunized rabbits were randomly divided into a normal diet group and a HFD-fed group. Anti-P3 antibody levels were determined by ELISA. Lipoprotein profile, circulating and tissue lipids, and vascular pro-inflammatory mediators were determined using standardized methods while atherosclerosis was determined by confocal microscopy studies and non-invasive imaging (PET/CT and Doppler ultrasonography). Studies treating human macrophages (hMΦ) and coronary vascular smooth muscle cells (hcVSMC) with rabbit serums were performed to ascertain the potential impact of anti-P3 Abs on the functionality of these crucial cells. Results: P3 immunization specifically induced the production of anti-P3 antibodies (Abs) and did not alter the lipoprotein profile. HFD strongly induced cholesteryl ester (CE) accumulation in the aorta of both the control and IrP groups, and their serum dose-dependently raised the intracellular CE of hMΦ and hcVSMC, promoting TNFR1 and phospho-NF-kB (p65) overexpression. These HFD pro-inflammatory effects were dramatically decreased in the aorta of P3-immunized rabbits and in hMΦ and hcVSMC exposed to the P3 rabbit serums. Microscopy studies revealed that P3 immunization reduced the percentage of lipids, macrophages, and SMCs in the arterial intima, as well as the atherosclerotic extent and lesion area in the aorta. PET/CT and Doppler ultrasonography studies showed that the average standardized uptake value (SUVmean) of the aorta and the arterial resistance index (ARI) of the carotids were more upregulated by HFD in the control and IrP groups than the P3 group. Conclusions: P3 immunization counteracts HFD-induced fatty streak formation in rabbits. The specific blockade of the LRP1 (CR9) domain with Anti-P3 Abs dramatically reduces HFD-induced intracellular CE loading and harmful coupling to pro-inflammatory signaling in the vasculature.


Assuntos
Aterosclerose/prevenção & controle , Imunização , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/imunologia , Fragmentos de Peptídeos/imunologia , Sequência de Aminoácidos , Animais , Especificidade de Anticorpos , Aorta/citologia , Aorta/diagnóstico por imagem , Aterosclerose/sangue , Aterosclerose/diagnóstico por imagem , Aterosclerose/imunologia , Células Cultivadas , Ésteres do Colesterol/metabolismo , Vasos Coronários/citologia , Dieta Hiperlipídica , Feminino , Humanos , Lipídeos/sangue , Lipoproteínas/sangue , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Macrófagos/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Domínios Proteicos , Coelhos , Distribuição Aleatória , Ultrassonografia Doppler , Resistência Vascular
3.
J Clin Med ; 8(6)2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31159404

RESUMO

Epicardial adipose tissue (EAT) constitutes a novel parameter for cardiometabolic risk assessment and a target for therapy. Here, we evaluated for the first time the plasma microRNA (miRNA) profile as a source of biomarkers for epicardial fat volume (EFV). miRNAs were profiled in plasma samples from 180 patients whose EFV was quantified using multidetector computed tomography. In the screening study, 54 deregulated miRNAs were identified in patients with high EFV levels (highest tertile) compared with matched patients with low EFV levels (lowest tertile). After filtering, 12 miRNAs were selected for subsequent validation. In the validation study, miR-15b-3p, miR-22-3p, miR-148a-3p miR-148b-3p and miR-590-5p were directly associated with EFV, even after adjustment for confounding factors (p value < 0.05 for all models). The addition of miRNA combinations to a model based on clinical variables improved the discrimination (area under the receiver-operating-characteristic curve (AUC) from 0.721 to 0.787). miRNAs correctly reclassified a significant proportion of patients with an integrated discrimination improvement (IDI) index of 0.101 and a net reclassification improvement (NRI) index of 0.650. Decision tree models used miRNA combinations to improve their classification accuracy. These results were reproduced using two proposed clinical cutoffs for epicardial fat burden. Internal validation corroborated the robustness of the models. In conclusion, plasma miRNAs constitute novel biomarkers of epicardial fat burden.

4.
Biochim Biophys Acta Biomembr ; 1861(7): 1302-1316, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31077676

RESUMO

Aggregated LDL is the first ligand reported to interact with the cluster II CR9 domain of low-density lipoprotein receptor-related protein 1 (LRP1). In particular, the C-terminal half of domain CR9, comprising the region Gly1127-Cys1140 exclusively recognizes aggregated LDL and it is crucial for aggregated LDL binding. Our aim was to study the effect of the sequence Gly1127-Cys1140 (named peptide LP3 and its retro-enantio version, named peptide DP3) on the structural characteristics of sphingomyelinase- (SMase) and phospholipase 2 (PLA2)-modified LDL particles. Turbidimetry, gel filtration chromatography (GFC) and transmission electronic microscopy (TEM) analysis showed that LP3 and DP3 peptides strongly inhibited SMase- and PLA2-induced LDL aggregation. Nondenaturing polyacrylamide gradient gel electrophoresis (GGE), agarose gel electrophoresis and high-performance thin-layer chromatography (HPTLC) indicated that LP3 and DP3 prevented SMase-induced alterations in LDL particle size, electric charge and phospholipid content, respectively, but not those induced by PLA2. Western blot analysis showed that LP3 and DP3 counteracted changes in ApoB-100 conformation induced by the two enzymes. LDL proteomics (LDL trypsin digestion followed by mass spectroscopy) and computational modeling methods evidenced that peptides preserve ApoB-100 conformation due to their electrostatic interactions with a basic region of ApoB-100. These results demonstrate that LRP1-derived peptides are protective against LDL aggregation, even in conditions of extreme lipolysis, through their capacity to bind to ApoB-100 regions critical for ApoB-100 conformational preservation. These results suggests that these LRP1(CR9) derived peptides could be promising tools to prevent LDL aggregation induced by the main proteolytic enzymes acting in the arterial intima.


Assuntos
Lipoproteínas LDL/química , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Peptídeos/metabolismo , Proteínas de Artrópodes/sangue , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Oligopeptídeos/sangue , Fosfolipases A2/metabolismo , Fosfolipídeos/química , Ligação Proteica , Esfingomielina Fosfodiesterase/química , Eletricidade Estática
5.
Clín. investig. arterioscler. (Ed. impr.) ; 30(5): 230-239, sept.-oct. 2018. ilus, tab
Artigo em Inglês | IBECS | ID: ibc-175441

RESUMO

Cardiovascular disease is the primary cause of death in obese and diabetic patients. In these groups of patients, the alterations of epicardial adipose tissue (EAT) contribute to both vascular and myocardial dysfunction. Therefore, it is of clinical interest to determine the mechanisms by which EAT influences cardiovascular disease. Two key factors contribute to the tight intercommunication among EAT, coronary arteries and myocardium. One is the close anatomical proximity between these tissues. The other is the capacity of EAT to secrete cytokines and other molecules with paracrine and vasocrine effects on the cardiovascular system. Epidemiological studies have demonstrated that EAT thickness is associated with not only metabolic syndrome but also atherosclerosis and heart failure. The evaluation of EAT using imaging modalities, although effective, presents several disadvantages including radiation exposure, limited availability and elevated costs. Therefore, there is a clinical interest in EAT as a source of new biomarkers of cardiovascular and endocrine alterations. In this review, we revise the mechanisms involved in the protective and pathological role of EAT and present the molecules released by EAT with greater potential to become biomarkers of cardiometabolic alterations


Las enfermedades cardiovasculares son la primera causa de muerte en pacientes obesos y diabéticos. Las alteraciones del tejido adiposo epicárdico (TAE) contribuyen a la disfunción vascular y del miocardio en estos pacientes. Es por tanto de interés clínico determinar los mecanismos por los cuales el TAE influye en la enfermedad cardiovascular. Aquí resumimos los mecanismos que subyacen a la asociación entre TAE, síndrome metabólico y enfermedades cardiovasculares. Dos factores contribuyen a la estrecha intercomunicación entre el TAE, las arterias coronarias y el miocardio. Uno es la estrecha proximidad anatómica entre estos tejidos. El otro es la capacidad del TAE para secretar citocinas con efectos paracrinos y vasocrinos en el sistema cardiovascular. Estudios epidemiológicos han demostrado que el grosor del TAE está asociado no solo con el síndrome metabólico sino también con la aterosclerosis y la insuficiencia cardíaca. La evaluación del TAE utilizando técnicas de imagen, aunque eficaz presenta desventajas tales como la exposición a la radiación, la disponibilidad limitada y los costes elevados. Por lo tanto, existe un interés clínico en el TAE como fuente de nuevos biomarcadores de alteraciones cardiovasculares y endocrinas. En este artículo, revisamos los mecanismos implicados en el papel protector y patológico del TAE y presentamos las moléculas liberadas por el TAE con mayor potencial para convertirse en biomarcadores de alteraciones cardiometabólicas


Assuntos
Humanos , Doenças Metabólicas/fisiopatologia , Doenças Cardiovasculares/fisiopatologia , Tecido Adiposo/fisiologia , Pericárdio/fisiopatologia , Citocinas/fisiologia , Vasos Coronários/fisiopatologia , Coração/fisiopatologia , Biomarcadores
6.
Clin Investig Arterioscler ; 30(5): 230-239, 2018.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-29903689

RESUMO

Cardiovascular disease is the primary cause of death in obese and diabetic patients. In these groups of patients, the alterations of epicardial adipose tissue (EAT) contribute to both vascular and myocardial dysfunction. Therefore, it is of clinical interest to determine the mechanisms by which EAT influences cardiovascular disease. Two key factors contribute to the tight intercommunication among EAT, coronary arteries and myocardium. One is the close anatomical proximity between these tissues. The other is the capacity of EAT to secrete cytokines and other molecules with paracrine and vasocrine effects on the cardiovascular system. Epidemiological studies have demonstrated that EAT thickness is associated with not only metabolic syndrome but also atherosclerosis and heart failure. The evaluation of EAT using imaging modalities, although effective, presents several disadvantages including radiation exposure, limited availability and elevated costs. Therefore, there is a clinical interest in EAT as a source of new biomarkers of cardiovascular and endocrine alterations. In this review, we revise the mechanisms involved in the protective and pathological role of EAT and present the molecules released by EAT with greater potential to become biomarkers of cardiometabolic alterations.


Assuntos
Tecido Adiposo/metabolismo , Doenças Cardiovasculares/fisiopatologia , Síndrome Metabólica/fisiopatologia , Biomarcadores/metabolismo , Doenças Cardiovasculares/etiologia , Vasos Coronários/metabolismo , Citocinas/metabolismo , Complicações do Diabetes/fisiopatologia , Humanos , Miocárdio/metabolismo , Obesidade/complicações , Pericárdio/metabolismo
7.
J Cell Mol Med ; 22(9): 4197-4208, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29921039

RESUMO

Our aim was to identify biophysical biomarkers of ventricular remodelling in tachycardia-induced dilated cardiomyopathy (DCM). Our study includes healthy controls (N = 7) and DCM pigs (N = 10). Molecular analysis showed global myocardial metabolic abnormalities, some of them related to myocardial hibernation in failing hearts, supporting the translationality of our model to study cardiac remodelling in dilated cardiomyopathy. Histological analysis showed unorganized and agglomerated collagen accumulation in the dilated ventricles and a higher percentage of fibrosis in the right (RV) than in the left (LV) ventricle (P = .016). The Fourier Transform Infrared Spectroscopy (FTIR) 1st and 2nd indicators, which are markers of the myofiber/collagen ratio, were reduced in dilated hearts, with the 1st indicator reduced by 45% and 53% in the RV and LV, respectively, and the 2nd indicator reduced by 25% in the RV. The 3rd FTIR indicator, a marker of the carbohydrate/lipid ratio, was up-regulated in the right and left dilated ventricles but to a greater extent in the RV (2.60-fold vs 1.61-fold, P = .049). Differential scanning calorimetry (DSC) showed a depression of the freezable water melting point in DCM ventricles - indicating structural changes in the tissue architecture - and lower protein stability. Our results suggest that the 1st, 2nd and 3rd FTIR indicators are useful markers of cardiac remodelling. Moreover, the 2nd and 3rd FITR indicators, which are altered to a greater extent in the right ventricle, are associated with greater fibrosis.


Assuntos
Carboidratos/química , Cardiomiopatia Dilatada/diagnóstico , Ventrículos do Coração/metabolismo , Lipídeos/química , Miocárdio Atordoado/metabolismo , Taquicardia/diagnóstico , Remodelação Ventricular , Animais , Biomarcadores/química , Varredura Diferencial de Calorimetria , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Estudos de Casos e Controles , Colágeno/metabolismo , Feminino , Ventrículos do Coração/patologia , Humanos , Miocárdio Atordoado/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miofibrilas/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Suínos , Taquicardia/complicações , Taquicardia/metabolismo , Taquicardia/patologia
8.
Oncotarget ; 6(27): 24230-45, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26203771

RESUMO

The TP63 gene codes for two major isoform types, TAp63 and ΔNp63, with probable opposite roles in tumorigenesis. The ΔNp63α protein is frequently amplified and overexpressed in different epithelial tumors. Accordingly, it has been considered a potential oncogene. Nonetheless, a possible metastatic suppressor activity has also been suggested based on the experimental observation that its expression is reduced or even absent in advanced invasive tumors. Such metastatic suppressor activities are often related to tumors bearing point mutated TP53 gene. However, its potential roles in TP53-deficient tumors are poorly characterized. Here we show that in spontaneous tumors, induced by the epidermal-specific Trp53 ablation, the reduction of ΔNp63 expression is an early event, whereas it is re-expressed in the lung metastatic lesions. Using knock down and ectopic expression approaches, we show that ΔNp63 expression opposes the epithelial-mesenchymal transition and reduces the metastatic potential of the cells. This process occurs through the modulation of ΔNp63-dependent downstream targets (including transcription factors and microRNAs) likely to play metastatic roles. Further, ΔNp63 also favors the expression of factors involved in iPS reprogramming, thus suggesting that it can also modulate specific stem cell traits in mouse epidermal tumor cells. Overall, our data assign antimetastatic roles to ΔNp63 in the context of p53 deficiency and epidermis.


Assuntos
Regulação para Baixo , Epiderme/metabolismo , Neoplasias Cutâneas/genética , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Animais , Linhagem Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Queratinócitos/metabolismo , Camundongos , Microscopia de Fluorescência , Mutação , Metástase Neoplásica , Fosfoproteínas/genética , Mutação Puntual , Pele/patologia , Neoplasias Cutâneas/metabolismo , Células-Tronco/citologia , Transativadores/genética
9.
Sci Rep ; 2: 434, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22666537

RESUMO

Missense mutations in TP53 gene promote metastasis in human tumours. However, little is known about the complete loss of function of p53 in tumour metastasis. Here we show that squamous cell carcinomas generated by the specific ablation of Trp53 gene in mouse epidermis are highly metastatic. Biochemical and genome-wide mRNA and miRNA analyses demonstrated that metastases are associated with the early induction of epithelial-mesenchymal transition (EMT) and deregulated miRNA expression in primary tumours. Increased expression of miR-21 was observed in undifferentiated, prometastatic mouse tumours and in human tumours characterized by p53 mutations and distant metastasis. The augmented expression of miR-21, mediated by active mTOR and Stat3 signalling, conferred increased invasive properties to mouse keratinocytes in vitro and in vivo, whereas blockade of miR-21 in a metastatic spindle cell line inhibits metastasis development. Collectively these data identify novel molecular mechanisms leading to metastasis in vivo originated by p53 loss in epithelia.


Assuntos
Carcinoma de Células Escamosas/genética , Epiderme/metabolismo , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , Proteína Supressora de Tumor p53/genética , Animais , Western Blotting , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular , Células Cultivadas , Epiderme/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Queratinócitos/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Mutação , Metástase Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...