Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 53(3): 1515-1531, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35488168

RESUMO

The recent realisation regarding the potentiality of the long-neglected non-Saccharomyces yeasts in improving the flavour profile and functionality of alcoholic beverages has pushed researchers to search for such potent strains in many sources. We studied the fungal diversity and the rice beer production capability of the fungal strains isolated from emao-a traditional rice beer starter culture of the Boro community. Fifty distinct colonies were picked from mixed-culture plates, of which ten representative morphotypes were selected for species identification, and simultaneous saccharification and beer fermentation (SSBF) assay. The representative isolates were identified as Hyphopichia burtonii (Hbur-FI38, Hbur-FI44, Hbur-FI47 & Hbur-FI68), Saccharomyces cerevisiae (Scer-FI51), Wickerhamomyces anomalus (Wano-FI52), Candida carpophila (Ccar-FI53), Mucor circinelloides (Mcir-FI60), and Saccharomycopsis malanga (Smal-FI77 and Smal-FI84). The non-Saccharomyces yeast strains Hbur-FI38, Hbur-FI44, Ccar-FI53, and Smal-FI77 showed SSBF capacity on rice substrate producing beer that contained 7-10% (v/v) ethanol. A scaled-up fermentation assay was performed to assess the strain-wise fermentation behaviour in large-scale production. The nutritional, functional, and sensory qualities of the SSBF strain fermented beer were compared to the beer produced by emao. All the strains produced beer with reduced alcohol and energy value while compared to the traditional starter emao. Beer produced by both the strains of H. burtonii stood out with higher ascorbic acid, phenol, and antioxidant property, and improved sensory profile in addition to reduced alcohol and energy value. Such SSBF strains are advantageous over the non-SSBF S. cerevisiae strains as the former can be used for direct beer production from rice substrates.


Assuntos
Oryza , Saccharomyces cerevisiae , Bebidas Alcoólicas , Cerveja/microbiologia , Etanol/análise , Fermentação
2.
Sci Rep ; 11(1): 14628, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272462

RESUMO

The emao, a traditional beer starter used in the North-East regions of India produces a high quality of beer from rice substrates; however, its microbial community structure and functional metabolic modules remain unknown. To address this gap, we have used shot-gun whole-metagenome sequencing technology; accordingly, we have detected several enzymes that are known to catalyze saccharification, lignocellulose degradation, and biofuel production indicating the presence of metabolic functionome in the emao. The abundance of eukaryotic microorganisms, specifically the members of Mucoromycota and Ascomycota, dominated over the prokaryotes in the emao compared to previous metagenomic studies on such traditional starters where the relative abundance of prokaryotes occurred higher than the eukaryotes. The family Rhizopodaceae (64.5%) and its genus Rhizopus (64%) were the most dominant ones, followed by Phaffomycetaceae (11.14%) and its genus Wickerhamomyces (10.03%). The family Leuconostocaceae (6.09%) represented by two genera (Leuconostoc and Weissella) was dominant over the other bacteria, and it was the third-highest in overall relative abundance in the emao. The comprehensive microbial species diversity, community structure, and metabolic modules found in the emao are of practical value in the formulation of mixed-microbial cultures for biofuel production from plant-based feedstocks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...