Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 64(23): 17146-17183, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34807608

RESUMO

Aberrant activity of the histone methyltransferase polycomb repressive complex 2 (PRC2) has been linked to several cancers, with small-molecule inhibitors of the catalytic subunit of the PRC2 enhancer of zeste homologue 2 (EZH2) being recently approved for the treatment of epithelioid sarcoma (ES) and follicular lymphoma (FL). Compounds binding to the EED subunit of PRC2 have recently emerged as allosteric inhibitors of PRC2 methyltransferase activity. In contrast to orthosteric inhibitors that target EZH2, small molecules that bind to EED retain their efficacy in EZH2 inhibitor-resistant cell lines. In this paper we disclose the discovery of potent and orally bioavailable EED ligands with good solubilities. The solubility of the EED ligands was optimized through a variety of design tactics, with the resulting compounds exhibiting in vivo efficacy in EZH2-driven tumors.


Assuntos
Inibidores Enzimáticos/farmacologia , Complexo Repressor Polycomb 2/antagonistas & inibidores , Regulação Alostérica , Animais , Domínio Catalítico , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/química , Proteína Potenciadora do Homólogo 2 de Zeste/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Compostos Heterocíclicos/química , Humanos , Ligantes , Complexo Repressor Polycomb 2/química , Ratos , Relação Estrutura-Atividade
2.
Front Immunol ; 12: 617316, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33737925

RESUMO

Background: Adenosine receptor type 2 (A2AR) inhibitor, AZD4635, has been shown to reduce immunosuppressive adenosine effects within the tumor microenvironment (TME) and to enhance the efficacy of checkpoint inhibitors across various syngeneic models. This study aims at investigating anti-tumor activity of AZD4635 alone and in combination with an anti-PD-L1-specific antibody (anti-PD-L1 mAb) across various TME conditions and at identifying, via mathematical quantitative modeling, a therapeutic combination strategy to further improve treatment efficacy. Methods: The model is represented by a set of ordinary differential equations capturing: 1) antigen-dependent T cell migration into the tumor, with subsequent proliferation and differentiation into effector T cells (Teff), leading to tumor cell lysis; 2) downregulation of processes mediated by A2AR or PD-L1, as well as other immunosuppressive mechanisms; 3) A2AR and PD-L1 inhibition by, respectively, AZD4635 and anti-PD-L1 mAb. Tumor size dynamics data from CT26, MC38, and MCA205 syngeneic mice treated with vehicle, anti-PD-L1 mAb, AZD4635, or their combination were used to inform model parameters. Between-animal and between-study variabilities (BAV, BSV) in treatment efficacy were quantified using a non-linear mixed-effects methodology. Results: The model reproduced individual and cohort trends in tumor size dynamics for all considered treatment regimens and experiments. BSV and BAV were explained by variability in T cell-to-immunosuppressive cell (ISC) ratio; BSV was additionally driven by differences in intratumoral adenosine content across the syngeneic models. Model sensitivity analysis and model-based preclinical study simulations revealed therapeutic options enabling a potential increase in AZD4635-driven efficacy; e.g., adoptive cell transfer or treatments affecting adenosine-independent immunosuppressive pathways. Conclusions: The proposed integrative modeling framework quantitatively characterized the mechanistic activity of AZD4635 and its potential added efficacy in therapy combinations, across various immune conditions prevailing in the TME. Such a model may enable further investigations, via simulations, of mechanisms of tumor resistance to treatment and of AZD4635 combination optimization strategies.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Antineoplásicos/farmacologia , Modelos Biológicos , Receptor A2A de Adenosina/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Algoritmos , Animais , Antineoplásicos Imunológicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Linhagem Celular Tumoral , Suscetibilidade a Doenças , Resistencia a Medicamentos Antineoplásicos , Quimioterapia Combinada , Isoenxertos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Br J Pharmacol ; 178(3): 600-613, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33125717

RESUMO

BACKGROUND AND PURPOSE: Savolitinib (AZD6094, HMPL-504, volitinib) is an oral, potent, and highly MET receptor TK inhibitor. This series of studies aimed to develop a pharmacokinetic-pharmacodynamic (PK/PD) model to link inhibition of MET phosphorylation (pMET) by savolitinib with anti-tumour activity. EXPERIMENTAL APPROACH: Cell line-derived xenograft (CDX) experiments using human lung cancer (EBC-1) and gastric cancer (MKN-45) cells were conducted in athymic nude mice using a variety of doses and schedules of savolitinib. Tumour pMET changes and growth inhibition were calculated after 28 days. Population PK/PD techniques were used to construct a PK/PD model for savolitinib. KEY RESULTS: Savolitinib showed dose- and dose frequency-dependent anti-tumour activity in the CDX models, with more frequent, lower dosing schedules (e.g., twice daily) being more effective than intermittent, higher dosing schedules (e.g., 4 days on/3 days off or 2 days on/5 days off). There was a clear exposure-response relationship, with maximal suppression of pMET of >90%. Data from additional CDX and patient-derived xenograft (PDX) models overlapped, allowing calculation of a single EC50 of 0.38 ng·ml-1 . Tumour growth modelling demonstrated that prolonged, high levels of pMET inhibition (>90%) were required for tumour stasis and regression in the models. CONCLUSION AND IMPLICATIONS: High and persistent levels of MET inhibition by savolitinib were needed for optimal monotherapy anti-tumour activity in preclinical models. The modelling framework developed here can be used to translate tumour growth inhibition from the mouse to human and thus guide choice of clinical dose and schedule.


Assuntos
Antineoplásicos , Proteínas Proto-Oncogênicas c-met , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Pirazinas , Triazinas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Immunother Cancer ; 8(2)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32727810

RESUMO

Accumulation of extracellular adenosine within the microenvironment is a strategy exploited by tumors to escape detection by the immune system. Adenosine signaling through the adenosine 2A receptor (A2AR) on immune cells elicits a range of immunosuppressive effects which promote tumor growth and limit the efficacy of immune checkpoint inhibitors. Preclinical data with A2AR inhibitors have demonstrated tumor regressions in mouse models by rescuing T cell function; however, the mechanism and role on other immune cells has not been fully elucidated. METHODS: We report here the development of a small molecule A2AR inhibitor including characterization of binding and inhibition of A2AR function with varying amounts of a stable version of adenosine. Functional activity was tested in both mouse and human T cells and dendritic cells (DCs) in in vitro assays to understand the intrinsic role on each cell type. The role of adenosine and A2AR inhibition was tested in DC differentiation assays as well as co-culture assays to access the cross-priming function of DCs. Syngeneic models were used to assess tumor growth alone and in combination with alphaprogrammed death-ligand 1 (αPD-L1). Immunophenotyping by flow cytometry was performed to examine global immune cell changes upon A2AR inhibition. RESULTS: We provide the first report of AZD4635, a novel small molecule A2AR antagonist which inhibits downstream signaling and increases T cell function as well as a novel mechanism of enhancing antigen presentation by CD103+ DCs. The role of antigen presentation by DCs, particularly CD103+ DCs, is critical to drive antitumor immunity providing rational to combine a priming agent AZD4635 with check point blockade. We find adenosine impairs the maturation and antigen presentation function of CD103+ DCs. We show in multiple syngeneic mouse tumor models that treatment of AZD4635 alone and in combination with αPD-L1 led to decreased tumor volume correlating with enhanced CD103+ function and T cell response. We extend these studies into human DCs to show that adenosine promotes a tolerogenic phenotype that can be reversed with AZD4635 restoring antigen-specific T cell activation. Our results support the novel role of adenosine signaling as an intrinsic negative regulator of CD103+ DCs maturation and priming. We show that potent inhibition of A2AR with AZD4635 reduces tumor burden and enhances antitumor immunity. This unique mechanism of action in CD103+ DCs may contribute to clinical responses as AZD4635 is being evaluated in clinical trials with IMFINZI (durvalumab, αPD-L1) in patients with solid malignancies. CONCLUSION: We provide evidence implicating suppression of adaptive and innate immunity by adenosine as a mechanism for immune evasion by tumors. Inhibition of adenosine signaling through selective small molecule inhibition of A2AR using AZD4635 restores T cell function via an internal mechanism as well as tumor antigen cross-presentation by CD103+ DCs resulting in antitumor immunity.


Assuntos
Antígenos CD/metabolismo , Antineoplásicos Imunológicos/uso terapêutico , Células Dendríticas/imunologia , Cadeias alfa de Integrinas/metabolismo , Neoplasias/imunologia , Receptor A2A de Adenosina/metabolismo , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Transdução de Sinais
5.
J Immunother Cancer ; 8(1)2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32409420

RESUMO

BACKGROUND: PD1/PDL1-directed therapies have been unsuccessful for multiple myeloma (MM), an incurable cancer of plasma cells in the bone marrow (BM). Therefore, other immune checkpoints such as extracellular adenosine and its immunosuppressive receptor should be considered. CD39 and CD73 convert extracellular ATP to adenosine, which inhibits T-cell effector functions via the adenosine receptor A2A (A2AR). We set out to investigate whether blocking the adenosine pathway could be a therapy for MM. METHODS: Expression of CD39 and CD73 on BM cells from patients and T-cell proliferation were determined by flow cytometry and adenosine production by Liquid chromatograpy-mass spectrometry (HPCL/MS). ENTPD1 (CD39) mRNA expression was determined on myeloma cells from patients enrolled in the publicly available CoMMpass study. Transplantable 5T33MM myeloma cells were used to determine the effect of inhibiting CD39, CD73 and A2AR in mice in vivo. RESULTS: Elevated level of adenosine was found in BM plasma of MM patients. Myeloma cells from patients expressed CD39, and high gene expression indicated reduced survival. CD73 was found on leukocytes and stromal cells in the BM. A CD39 inhibitor, POM-1, and an anti-CD73 antibody inhibited adenosine production and reduced T-cell suppression in vitro in coculture of myeloma and stromal cells. Blocking the adenosine pathway in vivo with a combination of Sodium polyoxotungstate (POM-1), anti-CD73, and the A2AR antagonist AZD4635 activated immune cells, increased interferon gamma production, and reduced the tumor load in a murine model of MM. CONCLUSIONS: Our data suggest that the adenosine pathway can be successfully targeted in MM and blocking this pathway could be an alternative to PD1/PDL1 inhibition for MM and other hematological cancers. Inhibitors of the adenosine pathway are available. Some are in clinical trials and they could thus reach MM patients fairly rapidly.


Assuntos
5'-Nucleotidase/metabolismo , Trifosfato de Adenosina/metabolismo , Adenosina/metabolismo , Antígenos CD/metabolismo , Apirase/metabolismo , Mieloma Múltiplo/patologia , Receptor A2A de Adenosina/química , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/metabolismo , Prognóstico , Receptor A2A de Adenosina/metabolismo , Taxa de Sobrevida
6.
Clin Cancer Res ; 26(9): 2176-2187, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31953314

RESUMO

PURPOSE: There are several agents in early clinical trials targeting components of the adenosine pathway including A2AR and CD73. The identification of cancers with a significant adenosine drive is critical to understand the potential for these molecules. However, it is challenging to measure tumor adenosine levels at scale, thus novel, clinically tractable biomarkers are needed. EXPERIMENTAL DESIGN: We generated a gene expression signature for the adenosine signaling using regulatory networks derived from the literature and validated this in patients. We applied the signature to large cohorts of disease from The Cancer Genome Atlas (TCGA) and cohorts of immune checkpoint inhibitor-treated patients. RESULTS: The signature captures baseline adenosine levels in vivo (r 2 = 0.92, P = 0.018), is reduced after small-molecule inhibition of A2AR in mice (r 2 = -0.62, P = 0.001) and humans (reduction in 5 of 7 patients, 70%), and is abrogated after A2AR knockout. Analysis of TCGA confirms a negative association between adenosine and overall survival (OS, HR = 0.6, P < 2.2e-16) as well as progression-free survival (PFS, HR = 0.77, P = 0.0000006). Further, adenosine signaling is associated with reduced OS (HR = 0.47, P < 2.2e-16) and PFS (HR = 0.65, P = 0.0000002) in CD8+ T-cell-infiltrated tumors. Mutation of TGFß superfamily members is associated with enhanced adenosine signaling and worse OS (HR = 0.43, P < 2.2e-16). Finally, adenosine signaling is associated with reduced efficacy of anti-PD1 therapy in published cohorts (HR = 0.29, P = 0.00012). CONCLUSIONS: These data support the adenosine pathway as a mediator of a successful antitumor immune response, demonstrate the prognostic potential of the signature for immunotherapy, and inform patient selection strategies for adenosine pathway modulators currently in development.


Assuntos
Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Adenosina/metabolismo , Imunoterapia/métodos , Neoplasias/terapia , Animais , Biomarcadores Tumorais/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Bases de Dados Genéticas , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Prognóstico , Distribuição Aleatória , Receptores A2 de Adenosina/metabolismo , Transdução de Sinais/genética , Taxa de Sobrevida , Transcriptoma
7.
Neuro Oncol ; 21(2): 189-200, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30184215

RESUMO

BACKGROUND: Isocitrate deyhydrogenase (IDH) mutant glioma comprises the majority of grades II-III gliomas and nearly all secondary glioblastomas. These progressive gliomas arise from mutations in IDH1 or IDH2 that pathologically produce D-2-hydroxyglutarate (2HG), which interferes with cell reactions using alpha ketoglutarate, leading to a hypermethylated genome and epigenetic dysregulation of gene expression initiating tumorigenesis. METHODS: Human IDH1 wild type (wt) and IDH1 R132H cell lines and patient-derived xenografts (PDXs) were used to evaluate the FDA-approved DNA demethylating agent 5-azacytidine (5-aza). Cell growth, protein and gene expression, chromatin immunoprecipitation, and nucleosome position assays were performed in 5-aza treated cells. To evaluate antitumor activity in vivo, 5-aza was administered alone and in combination with temozolomide (TMZ) in a PDX glioma model harboring IDH1 R132H mutation. RESULTS: 5-Aza treatment has been found to reduce cell growth and increase expression of glial fibrillary acid protein (GFAP). Chromatin immunoprecipitation and nucleosome position assay showed that the mechanism of increased GFAP expression induction is associated with histone modification and nucleosome repositioning of the GFAP promoter, respectively. In vivo, 5-aza treatment extended survival in IDH1 R132H mutant but not in an IDH1 wt glioma model. Additionally, 5-aza enhances the therapeutic effect of the DNA damaging agent TMZ in both subcutaneous and orthotopic PDX models of IDH1 R132H mutant glioma. CONCLUSION: 5-Aza provided a survival benefit as a single agent but worked best in combination with TMZ in 2 different IDH1 R132H mutant glioma models.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proliferação de Células , Desmetilação , Epigênese Genética , Glioma/patologia , Isocitrato Desidrogenase/genética , Mutação , Animais , Apoptose , Azacitidina/administração & dosagem , Metilação de DNA , Feminino , Glioma/tratamento farmacológico , Glioma/genética , Humanos , Camundongos , Camundongos Nus , Temozolomida/administração & dosagem , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Anal Biochem ; 568: 78-88, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30408457

RESUMO

Adenosine is known to be an important signaling molecule in many physiological processes and has recently been shown to be an important molecule in oncology. A fit for purpose method has been developed for the quantification of adenosine in murine tumor samples using pre-column derivatization and liquid chromatography-mass spectrometry (LC-MS/MS). To overcome adenosine quantification challenges, derivatization with dansyl chloride was employed. This derivatization technique, following protein precipitation and liquid-liquid extraction, improved the sensitivity and selectivity of adenosine in tumor samples through the reduction of endogenous interference and matrix effects. This method utilizes a mouse plasma calibration curve, qualified over a range of 0.019 µM-37 µM. The 15 min derivatization incubation time and 1 min chromatographic run time allow for higher throughput. The following established method overcomes challenges associated with the quantification of low molecular weight, polar, endogenous molecules, such as adenosine, using derivatization and LC-MS/MS. With the additional analysis of murine tumors, this method will contribute to the understanding of the impact adenosine plays in the tumor microenvironment and the bearing it has on targeted cancer therapies.


Assuntos
Adenosina/sangue , Neoplasias Encefálicas/sangue , Neoplasias Hepáticas/sangue , Adenosina/análogos & derivados , Adenosina/química , Animais , Neoplasias Encefálicas/diagnóstico , Calibragem , Cromatografia Líquida , Neoplasias Hepáticas/diagnóstico , Camundongos , Espectrometria de Massas em Tandem
9.
Expert Opin Drug Discov ; 13(11): 997-1003, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30336706

RESUMO

INTRODUCTION: Adenosine A2A Receptor (A2AR) antagonists are an emerging class of agents that treat cancers, both as a monotherapy and in combination with other therapeutic agents. Several studies support the accumulation of extracellular adenosine in the tumor microenvironment as a critical mechanism in immune evasion implicating A2AR antagonists for use in immuno-oncology. Areas covered: In this perspective article, the authors briefly outline the history of the A2AR antagonist field for central nervous system indications and give their perspective on the status of agents progressing today in oncology. A brief description of the biological rationale in oncology is given. A particular focus of this article is progress in A2AR structure determination and its impact on Structure-Based Drug Design. Expert opinion: Our understanding of the A2AR antagonist mechanism of action has changed and is now being clinically validated by several key companies in the oncology field. This area is likely to rapidly develop over the next 1-2 years.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Desenho de Fármacos , Humanos , Neoplasias/patologia , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/efeitos dos fármacos , Receptor A2A de Adenosina/metabolismo , Microambiente Tumoral
10.
Mol Cancer ; 16(1): 177, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29212548

RESUMO

Efforts to develop effective cancer therapeutics have been hindered by a lack of clinically predictive preclinical models which recapitulate this complex disease. Patient derived xenograft (PDX) models have emerged as valuable tools for translational research but have several practical limitations including lack of sustained growth in vitro. In this study, we utilized Conditional Reprogramming (CR) cell technology- a novel cell culture system facilitating the generation of stable cultures from patient biopsies- to establish PDX-derived cell lines which maintain the characteristics of the parental PDX tumor. Human lung and ovarian PDX tumors were successfully propagated using CR technology to create stable explant cell lines (CR-PDX). These CR-PDX cell lines maintained parental driver mutations and allele frequency without clonal drift. Purified CR-PDX cell lines were amenable to high throughput chemosensitivity screening and in vitro genetic knockdown studies. Additionally, re-implanted CR-PDX cells proliferated to form tumors that retained the growth kinetics, histology, and drug responses of the parental PDX tumor. CR technology can be used to generate and expand stable cell lines from PDX tumors without compromising fundamental biological properties of the model. It offers the ability to expand PDX cells in vitro for subsequent 2D screening assays as well as for use in vivo to reduce variability, animal usage and study costs. The methods and data detailed here provide a platform to generate physiologically relevant and predictive preclinical models to enhance drug discovery efforts.


Assuntos
Linhagem Celular Tumoral/citologia , Técnicas de Reprogramação Celular/métodos , Neoplasias Pulmonares/patologia , Neoplasias Ovarianas/patologia , Animais , Linhagem Celular Tumoral/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Neoplasias Pulmonares/genética , Masculino , Camundongos , Mutação , Neoplasias Ovarianas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Oncotarget ; 8(46): 80124-80138, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-29113289

RESUMO

PURPOSE: Glioblastoma is a deadly brain cancer with a median survival time of ∼15 months. Ionizing radiation plus the DNA alkylator temozolomide (TMZ) is the current standard therapy. PAC-1, a procaspase-3 activating small molecule, is blood-brain barrier penetrant and has previously demonstrated ability to synergize with diverse pro-apoptotic chemotherapeutics. We studied if PAC-1 could enhance the activity of TMZ, and whether addition of PAC-1 to standard treatment would be feasible in spontaneous canine malignant gliomas. EXPERIMENTAL DESIGN: Using cell lines and online gene expression data, we identified procaspase-3 as a potential molecular target for most glioblastomas. We investigated PAC-1 as a single agent and in combination with TMZ against glioma cells in culture and in orthotopic rodent models of glioma. Three dogs with spontaneous gliomas were treated with an analogous human glioblastoma treatment protocol, with concurrent PAC-1. RESULTS: Procaspase-3 is expressed in gliomas, with higher gene expression correlating with increased tumor grade and decreased prognosis. PAC-1 is cytotoxic to glioma cells in culture and active in orthotopic rodent glioma models. PAC-1 added to TMZ treatments in cell culture increases apoptotic death, and the combination significantly increases survival in orthotopic glioma models. Addition of PAC-1 to TMZ and radiation was well-tolerated in 3 out of 3 pet dogs with spontaneous glioma, and partial to complete tumor reductions were observed. CONCLUSIONS: Procaspase-3 is a clinically relevant target for treatment of glioblastoma. Synergistic activity of PAC-1/TMZ in rodent models and the demonstration of feasibility of the combined regime in canine patients suggest potential for PAC-1 in the treatment of glioblastoma.

12.
Mol Cancer Ther ; 14(1): 3-13, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25376612

RESUMO

The hedgehog (Hh) signaling pathway is activated in many types of cancer and therefore presents an attractive target for new anticancer agents. Here, we show that mebendazole, a benzamidazole with a long history of safe use against nematode infestations and hydatid disease, potently inhibited Hh signaling and slowed the growth of Hh-driven human medulloblastoma cells at clinically attainable concentrations. As an antiparasitic, mebendazole avidly binds nematode tubulin and causes inhibition of intestinal microtubule synthesis. In human cells, mebendazole suppressed the formation of the primary cilium, a microtubule-based organelle that functions as a signaling hub for Hh pathway activation. The inhibition of Hh signaling by mebendazole was unaffected by mutants in the gene that encodes human Smoothened (SMO), which are selectively propagated in cell clones that survive treatment with the Hh inhibitor vismodegib. Combination of vismodegib and mebendazole resulted in additive Hh signaling inhibition. Because mebendazole can be safely administered to adults and children at high doses over extended time periods, we propose that mebendazole could be rapidly repurposed and clinically tested as a prospective therapeutic agent for many tumors that are dependent on Hh signaling.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Reposicionamento de Medicamentos/métodos , Proteínas Hedgehog/antagonistas & inibidores , Mebendazol/administração & dosagem , Meduloblastoma/tratamento farmacológico , Anilidas/farmacologia , Animais , Antineoplásicos/farmacologia , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Células HEK293 , Humanos , Mebendazol/farmacologia , Meduloblastoma/genética , Camundongos , Camundongos Nus , Mutação , Células NIH 3T3 , Piridinas/farmacologia , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Neurooncol ; 121(3): 479-87, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25471051

RESUMO

Mutations in isocitrate dehydrogenase 1 (IDH1) have been found in the vast majority of low grade and progressive infiltrating gliomas and are characterized by the production of 2-hydroxyglutarate from α-ketoglutarate. Recent investigations of malignant gliomas have identified additional genetic and chromosomal abnormalities which cluster with IDH1 mutations into two distinct subgroups. The astrocytic subgroup was found to have frequent mutations in ATRX, TP53 and displays alternative lengthening of telomeres. The second subgroup with oligodendrocytic morphology has frequent mutations in CIC or FUBP1, and is linked to co-deletion of the 1p/19q arms. These mutations reflect the development of two distinct molecular pathways representing the majority of IDH1 mutant gliomas. Unfortunately, due to the scarcity of endogenously derived IDH1 mutant models, there is a lack of accurate models to study mechanism and develop new therapy. Here we report the generation of an endogenous IDH1 anaplastic astrocytoma in vivo model with concurrent mutations in TP53, CDKN2A and ATRX. The model has a similar phenotype and histopathology as the original patient tumor, expresses the IDH1 (R132H) mutant protein and exhibits an alternative lengthening of telomeres phenotype. The JHH-273 model is characteristic of anaplastic astrocytoma and represents a valuable tool for investigating the pathogenesis of this distinct molecular subset of gliomas and for preclinical testing of compounds targeting IDH1 mutations or alternative lengthening of telomeres.


Assuntos
Astrocitoma/genética , Astrocitoma/patologia , Isocitrato Desidrogenase/genética , Mutação , Telômero/patologia , Adulto , Animais , DNA Helicases/genética , Modelos Animais de Doenças , Genes p16 , Xenoenxertos , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Masculino , Camundongos , Transplante de Neoplasias/métodos , Proteínas Nucleares/genética , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor p53/genética , Proteína Nuclear Ligada ao X
14.
Oncotarget ; 4(10): 1737-47, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24077805

RESUMO

Somatic mutations in Isocitrate Dehydrogenase 1 (IDH1) are frequent in low grade and progressive gliomas and are characterized by the production of 2-hydroxyglutarate (2-HG) from α-ketoglutarate by the mutant enzyme. 2-HG is an "oncometabolite" that competitively inhibits α-KG dependent dioxygenases resulting in various widespread cellular changes including abnormal hypermethylation of genomic DNA and suppression of cellular differentiation. Despite the growing understanding of IDH mutant gliomas, the development of effective therapies has proved challenging in part due to the scarcity of endogenous mutant in vivo models. Here we report the generation of an endogenous IDH1 anaplastic astrocytoma model which rapidly grows in vivo, produces 2-HG and exhibits DNA hypermethylation. Using this model, we have demonstrated the preclinical efficacy and mechanism of action of the FDA approved demethylating drug 5-azacytidine in vivo. Long term administration of 5-azacytidine resulted in reduction of DNA methylation of promoter loci, induction of glial differentiation, reduction of cell proliferation and a significant reduction in tumor growth. Tumor regression was observed at 14 weeks and subsequently showed no signs of re-growth at 7 weeks despite discontinuation of therapy. These results have implications for clinical trials of demethylating agents for patients with IDH mutated gliomas.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Azacitidina/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/enzimologia , Glioma/tratamento farmacológico , Glioma/enzimologia , Isocitrato Desidrogenase/genética , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Diferenciação Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Feminino , Glioma/genética , Glioma/patologia , Humanos , Imuno-Histoquímica , Isocitrato Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Nus , Mutação , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Oncotarget ; 4(10): 1729-36, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24077826

RESUMO

Mutation in the IDH1 or IDH2 genes occurs frequently in gliomas and other human malignancies. In intermediate grade gliomas, IDH1 mutation is found in over 70% of tumors. These mutations impart the mutant IDH enzyme with a neomorphic activity - the ability to synthesize 2-hydroxyglutarate (2-HG). This ability leads to a reprogramming of chromatin state, a block in differentiation, and the establishment of the glioma hypermethylator phenotype (G-CIMP). It has been hypothesized but not proven that the extensive DNA methylation that occurs in G-CIMP tumors helps maintain and "lock in" glioma cancer cells in a dedifferentiated state. Here, we tested this hypothesis by treating patient derived IDH1 mutant glioma initiating cells (GIC) with non-cytotoxic, epigenetically targeted doses of the DNMT inhibitor decitabine. Global methylome analysis of treated IDH1 mutant GICs showed that DAC treatment resulted in reversal of DNA methylation marks induced by IDH and the re-expression of genes associated with differentiation. Accordingly, treatment of IDH1 mutant glioma cells resulted in a dramatic loss of stem-like properties and efficient adoption of markers of differentiation, effects not seen in decitabine treated IDH wild-type GICs. Induction of differentiation was much more efficient than that seen following treatment with a specific inhibitor of mutant IDH enzyme (Agios). Decitabine also decreased replicative potential and tumor growth in vivo. Reexpression of polycomb regulated genes accompanied these DAC-induced phenotypes. In total, our data indicates that targeting the pathologic DNA methylation in IDH mutant cells can reverse mutant IDH induced hypermethylation and block in differentiation and promote tumor control. These findings have substantial impact for exploring new treatment strategies for patients with IDH mutant gliomas.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Azacitidina/análogos & derivados , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/enzimologia , Glioma/tratamento farmacológico , Glioma/enzimologia , Isocitrato Desidrogenase/genética , Animais , Azacitidina/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Diferenciação Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Metilação de DNA , Decitabina , Feminino , Glioma/genética , Glioma/patologia , Xenoenxertos , Humanos , Isocitrato Desidrogenase/metabolismo , Camundongos , Camundongos SCID , Mutação
16.
Cancer Cell ; 23(1): 23-34, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23291299

RESUMO

Recognition of the multiple roles of Hedgehog signaling in cancer has prompted intensive efforts to develop targeted pathway inhibitors. Leading inhibitors in clinical development act by binding to a common site within Smoothened, a critical pathway component. Acquired Smoothened mutations, including SMO(D477G), confer resistance to these inhibitors. Here, we report that itraconazole and arsenic trioxide, two agents in clinical use that inhibit Hedgehog signaling by mechanisms distinct from that of current Smoothened antagonists, retain inhibitory activity in vitro in the context of all reported resistance-conferring Smoothened mutants and GLI2 overexpression. Itraconazole and arsenic trioxide, alone or in combination, inhibit the growth of medulloblastoma and basal cell carcinoma in vivo, and prolong survival of mice with intracranial drug-resistant SMO(D477G) medulloblastoma.


Assuntos
Antineoplásicos/uso terapêutico , Arsenicais/uso terapêutico , Carcinoma Basocelular/tratamento farmacológico , Proteínas Hedgehog/fisiologia , Itraconazol/uso terapêutico , Meduloblastoma/tratamento farmacológico , Óxidos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Anilidas/farmacologia , Anilidas/uso terapêutico , Animais , Antineoplásicos/farmacologia , Trióxido de Arsênio , Arsenicais/farmacologia , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patologia , Resistencia a Medicamentos Antineoplásicos , Proteínas Hedgehog/metabolismo , Itraconazol/farmacologia , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Camundongos , Óxidos/farmacologia , Piridinas/farmacologia , Piridinas/uso terapêutico , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptor Smoothened
17.
Curr Opin Oncol ; 24(1): 83-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22080945

RESUMO

PURPOSE OF REVIEW: IDH1/2 mutations occur in up to 70% of low-grade gliomas and secondary glioblastomas. Mutation of these enzymes reduces the wildtype function of the enzyme (conversion of isocitrate to α-ketoglutarate) while conferring a new enzymatic function, the production of D-2-hydroxyglutarate (D-2-HG) from α-ketoglutarate (α-KG). However, it is unclear how these enzymatic changes contribute to tumorigenesis. Here, we discuss the recent studies that demonstrate how IDH1/2 mutation may alter the metabolism and epigenome of gliomas, how these changes may contribute to tumor formation, and opportunities they might provide for molecular targeting. RECENT FINDINGS: Metabolomic studies of IDH1/2 mutant cells have revealed alterations in glutamine, fatty acid, and citrate synthesis pathways. Additionally, D-2-HG produced by IDH1/2 mutant cells can competitively inhibit α-KG-dependent enzymes, including histone demethylases and DNA hydroxylases, potentially leading to a distinct epigenetic phenotype. Alterations in metabolism and DNA methylation present possible mechanisms of tumorigenesis. SUMMARY: Recent attempts to improve outcomes for glioma patients have resulted in incremental gains. Studies of IDH1/2 mutations have provided mechanistic insights into tumorigenesis and potential avenues for therapeutic intervention. Further study of IDH1/2 mutations might allow for improved therapeutic strategies.


Assuntos
Neoplasias Encefálicas , Glioma , Isocitrato Desidrogenase/genética , Mutação/fisiologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/genética , Glioma/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...