Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Immunity ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38749447

RESUMO

Tumors weakly infiltrated by T lymphocytes poorly respond to immunotherapy. We aimed to unveil malignancy-associated programs regulating T cell entrance, arrest, and activation in the tumor environment. Differential expression of cell adhesion and tissue architecture programs, particularly the presence of the membrane tetraspanin claudin (CLDN)18 as a signature gene, demarcated immune-infiltrated from immune-depleted mouse pancreatic tumors. In human pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer, CLDN18 expression positively correlated with more differentiated histology and favorable prognosis. CLDN18 on the cell surface promoted accrual of cytotoxic T lymphocytes (CTLs), facilitating direct CTL contacts with tumor cells by driving the mobilization of the adhesion protein ALCAM to the lipid rafts of the tumor cell membrane through actin. This process favored the formation of robust immunological synapses (ISs) between CTLs and CLDN18-positive cancer cells, resulting in increased T cell activation. Our data reveal an immune role for CLDN18 in orchestrating T cell infiltration and shaping the tumor immune contexture.

2.
Cell Metab ; 36(5): 1030-1043.e7, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38670107

RESUMO

The mechanisms of hepatic stellate cell (HSC) activation and the development of liver fibrosis are not fully understood. Here, we show that deletion of a nuclear seven transmembrane protein, TM7SF3, accelerates HSC activation in liver organoids, primary human HSCs, and in vivo in metabolic-dysfunction-associated steatohepatitis (MASH) mice, leading to activation of the fibrogenic program and HSC proliferation. Thus, TM7SF3 knockdown promotes alternative splicing of the Hippo pathway transcription factor, TEAD1, by inhibiting the splicing factor heterogeneous nuclear ribonucleoprotein U (hnRNPU). This results in the exclusion of the inhibitory exon 5, generating a more active form of TEAD1 and triggering HSC activation. Furthermore, inhibiting TEAD1 alternative splicing with a specific antisense oligomer (ASO) deactivates HSCs in vitro and reduces MASH diet-induced liver fibrosis. In conclusion, by inhibiting TEAD1 alternative splicing, TM7SF3 plays a pivotal role in mitigating HSC activation and the progression of MASH-related fibrosis.


Assuntos
Proteínas de Ligação a DNA , Cirrose Hepática , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição , Fatores de Transcrição de Domínio TEA/metabolismo , Animais , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Humanos , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Processamento Alternativo , Camundongos Endogâmicos C57BL , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Células Estreladas do Fígado/metabolismo , Masculino , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/genética , Camundongos Knockout
3.
Cell Death Dis ; 15(1): 81, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253523

RESUMO

A core pathophysiologic feature underlying many respiratory diseases is multiciliated cell dysfunction, leading to inadequate mucociliary clearance. Due to the prevalence and highly variable etiology of mucociliary dysfunction in respiratory diseases, it is critical to understand the mechanisms controlling multiciliogenesis that may be targeted to restore functional mucociliary clearance. Multicilin, in a complex with E2F4, is necessary and sufficient to drive multiciliogenesis in airway epithelia, however this does not apply to all cell types, nor does it occur evenly across all cells in the same cell population. In this study we further investigated how co-factors regulate the ability of Multicilin to drive multiciliogenesis. Combining data in mouse embryonic fibroblasts and human bronchial epithelial cells, we identify RBL2 as a repressor of the transcriptional activity of Multicilin. Knockdown of RBL2 in submerged cultures or phosphorylation of RBL2 in response to apical air exposure, in the presence of Multicilin, allows multiciliogenesis to progress. These data demonstrate a dynamic interaction between RBL2 and Multicilin that regulates the capacity of cells to differentiate and multiciliate. Identification of this mechanism has important implications for facilitating MCC differentiation in diseases with impaired mucociliary clearance.


Assuntos
Fibroblastos , Doenças Respiratórias , Animais , Camundongos , Humanos , Diferenciação Celular/genética , Células Epiteliais , Epitélio , Proteína p130 Retinoblastoma-Like
4.
Cell Rep ; 42(12): 113286, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37995179

RESUMO

Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer and presents clinically with a high degree of biological heterogeneity and distinct clinical outcomes. The current paradigm of LUAD etiology posits alveolar epithelial type II (AT2) cells as the primary cell of origin, while the role of AT1 cells in LUAD oncogenesis remains unknown. Here, we examine oncogenic transformation in mouse Gram-domain containing 2 (Gramd2)+ AT1 cells via oncogenic KRASG12D. Activation of KRASG12D in AT1 cells induces multifocal LUAD, primarily of papillary histology. Furthermore, KRT8+ intermediate cell states were observed in both AT2- and AT1-derived LUAD, but SCGB3A2+, another intermediate cell marker, was primarily associated with AT1 cells, suggesting different mechanisms of tumor evolution. Collectively, our study reveals that Gramd2+ AT1 cells can serve as a cell of origin for LUAD and suggests that distinct subtypes of LUAD based on cell of origin be considered in the development of therapeutics.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Animais , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Transformação Celular Neoplásica/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
5.
bioRxiv ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37905051

RESUMO

Alveolar epithelial regeneration is critical for normal lung function and becomes dysregulated in disease. While alveolar type 2 (AT2) and club cells are known distal lung epithelial progenitors, determining if alveolar epithelial type 1 (AT1) cells also contribute to alveolar regeneration has been hampered by lack of highly specific mouse models labeling AT1 cells. To address this, the Gramd2 CreERT2 transgenic strain was generated and crossed to Rosa mTmG mice. Extensive cellular characterization, including distal lung immunofluorescence and cytospin staining, confirmed that GRAMD2 + AT1 cells are highly enriched for green fluorescent protein (GFP). Interestingly, Gramd2 CreERT2 GFP + cells were able to form organoids in organoid co-culture with Mlg fibroblasts. Temporal scRNAseq revealed that Gramd2 + AT1 cells transition through numerous intermediate lung epithelial cell states including basal, secretory and AT2 cell in organoids while acquiring proliferative capacity. Our results indicate that Gramd2 + AT1 cells are highly plastic suggesting they may contribute to alveolar regeneration.

6.
Ann Am Thorac Soc ; 20(8): 1077-1087, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37526479

RESUMO

Rationale: To identify barriers and opportunities for Ph.D., basic and translational scientists to be fully integrated into clinical units. Objectives: In 2022, an ad hoc committee of the American Thoracic Society developed a project proposal and workshop to identify opportunities and barriers for scientists who do not practice medicine to develop successful careers and achieve tenure-track faculty positions in clinical departments and divisions within academic medical centers (AMCs) in the United States. Methods: This document focuses on results from a survey of adult and pediatric pulmonary, critical care, and sleep medicine division chiefs as well as a survey of workshop participants, including faculty in departmental and school leadership roles in both basic science and clinical units within U.S. AMCs. Results: We conclude that full integration of non-clinically practicing basic and translational scientists into the clinical units, in addition to their traditional placements in basic science units, best serves the tripartite mission of AMCs to provide care, perform research, and educate the next generation. Evidence suggests clinical units do employ Ph.D. scientists in large numbers, but these faculty are often hired into non-tenure track positions, which do not provide the salary support, start-up funds, research independence, or space often associated with hiring in basic science units within the same institution. These barriers to success of Ph.D. faculty in clinical units are largely financial. Conclusions: Our recommendation is for AMCs to consider and explore some of our proposed strategies to accomplish the goal of integrating basic and translational scientists into clinical units in a meaningful way.


Assuntos
Centros Médicos Acadêmicos , Médicos , Adulto , Estados Unidos , Humanos , Criança , Seleção de Pessoal , Liderança , Docentes de Medicina
7.
bioRxiv ; 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37577572

RESUMO

A core pathophysiologic feature underlying many respiratory diseases is multiciliated cell dysfunction, leading to inadequate mucociliary clearance. Due to the prevalence and highly variable etiology of mucociliary dysfunction in respiratory diseases, it is critical to understand the mechanisms controlling multiciliogenesis that may be targeted to restore functional mucociliary clearance. Multicilin, in a complex with E2F4, is necessary and sufficient to drive multiciliogenesis in airway epithelia, however this does not apply to all cell types, nor does it occur evenly across all cells in the same cell population. In this study we further investigated how co-factors regulate the ability of Multicilin to drive multiciliogenesis. Combining data in mouse embryonic fibroblasts and human bronchial epithelial cells, we identify RBL2 as a repressor of the transcriptional activity of Multicilin. Knockdown of RBL2 in submerged cultures or phosphorylation of RBL2 in response to apical air exposure, in the presence of Multicilin, allows multiciliogenesis to progress. These data demonstrate a dynamic interaction between RBL2 and Multicilin that regulates the capacity of cells to differentiate and multiciliate. Identification of this mechanism has important implications for facilitating MCC differentiation in diseases with impaired mucociliary clearance.

8.
PLoS One ; 17(11): e0276462, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36413536

RESUMO

The long-sought-after "magic bullet" in systemic therapy remains unrealized for disease targets existing inside most tissues, theoretically because vascular endothelium impedes passive tissue entry and full target engagement. We engineered the first "dual precision" bispecific antibody with one arm pair to precisely bind to lung endothelium and drive active delivery and the other to precisely block TGF-ß effector function inside lung tissue. Targeting caveolae for transendothelial pumping proved essential for delivering most of the injected intravenous dose precisely into lungs within one hour and for enhancing therapeutic potency by >1000-fold in a rat pneumonitis model. Ultra-low doses (µg/kg) inhibited inflammatory cell infiltration, edema, lung tissue damage, disease biomarker expression and TGF-ß signaling. The prodigious benefit of active vs passive transvascular delivery of a precision therapeutic unveils a new promising drug design, delivery and therapy paradigm ripe for expansion and clinical testing.


Assuntos
Anticorpos Biespecíficos , Cavéolas , Ratos , Animais , Cavéolas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Anticorpos Biespecíficos/metabolismo , Pulmão/metabolismo , Endotélio Vascular/metabolismo
9.
Elife ; 112022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36214448

RESUMO

Lung development is precisely controlled by underlying gene regulatory networks (GRN). Disruption of genes in the network can interrupt normal development and cause diseases such as bronchopulmonary dysplasia (BPD) - a chronic lung disease in preterm infants with morbid and sometimes lethal consequences characterized by lung immaturity and reduced alveolarization. Here, we generated a transgenic mouse exhibiting a moderate severity BPD phenotype by blocking IGF1 signaling in secondary crest myofibroblasts (SCMF) at the onset of alveologenesis. Using approaches mirroring the construction of the model GRN in sea urchin's development, we constructed the IGF1 signaling network underlying alveologenesis using this mouse model that phenocopies BPD. The constructed GRN, consisting of 43 genes, provides a bird's eye view of how the genes downstream of IGF1 are regulatorily connected. The GRN also reveals a mechanistic interpretation of how the effects of IGF1 signaling are transduced within SCMF from its specification genes to its effector genes and then from SCMF to its neighboring alveolar epithelial cells with WNT5A and FGF10 signaling as the bridge. Consistently, blocking WNT5A signaling in mice phenocopies BPD as inferred by the network. A comparative study on human samples suggests that a GRN of similar components and wiring underlies human BPD. Our network view of alveologenesis is transforming our perspective to understand and treat BPD. This new perspective calls for the construction of the full signaling GRN underlying alveologenesis, upon which targeted therapies for this neonatal chronic lung disease can be viably developed.


Assuntos
Displasia Broncopulmonar , Lactente , Humanos , Camundongos , Recém-Nascido , Animais , Displasia Broncopulmonar/genética , Redes Reguladoras de Genes , Recém-Nascido Prematuro , Organogênese , Modelos Animais de Doenças , Pulmão , Animais Recém-Nascidos , Fator de Crescimento Insulin-Like I/genética
10.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L341-L354, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35762622

RESUMO

The 9th biennial conference titled "Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases" was hosted virtually, due to the ongoing COVID-19 pandemic, in collaboration with the University of Vermont Larner College of Medicine, the National Heart, Lung, and Blood Institute, the Alpha-1 Foundation, the Cystic Fibrosis Foundation, and the International Society for Cell & Gene Therapy. The event was held from July 12th through 15th, 2021 with a pre-conference workshop held on July 9th. As in previous years, the objectives remained to review and discuss the status of active research areas involving stem cells (SCs), cellular therapeutics, and bioengineering as they relate to the human lung. Topics included 1) technological advancements in the in situ analysis of lung tissues, 2) new insights into stem cell signaling and plasticity in lung remodeling and regeneration, 3) the impact of extracellular matrix in stem cell regulation and airway engineering in lung regeneration, 4) differentiating and delivering stem cell therapeutics to the lung, 5) regeneration in response to viral infection, and 6) ethical development of cell-based treatments for lung diseases. This selection of topics represents some of the most dynamic and current research areas in lung biology. The virtual workshop included active discussion on state-of-the-art methods relating to the core features of the 2021 conference, including in situ proteomics, lung-on-chip, induced pluripotent stem cell (iPSC)-airway differentiation, and light sheet microscopy. The conference concluded with an open discussion to suggest funding priorities and recommendations for future research directions in basic and translational lung biology.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Bioengenharia , Biologia , COVID-19/terapia , Humanos , Pulmão , Pandemias
11.
Cell Rep ; 39(1): 110608, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385750

RESUMO

The lung alveolus is lined with alveolar type 1 (AT1) and type 2 (AT2) epithelial cells. During alveologenesis, increasing demand associated with expanding alveolar numbers is met by proliferating progenitor AT2s (pAT2). Little information exists regarding the identity of this population and their niche microenvironment. We show that during alveologenesis, Hedgehog-responsive PDGFRa(+) progenitors (also known as SCMFs) are a source of secreted trophic molecules that maintain a unique pAT2 population. SCMFs are in turn maintained by TGFß signaling. Compound inactivation of Alk5 TßR2 in SCMFs reduced their numbers and depleted the pAT2 pool without impacting differentiation of daughter cells. In lungs of preterm infants who died with bronchopulmonary dysplasia, PDGFRa is reduced and the number of proliferative AT2s is diminished, indicating that an evolutionarily conserved mechanism governs pAT2 behavior during alveologenesis. SCMFs are a transient cell population, active only during alveologenesis, making them a unique stage-specific niche mesodermal cell type in mammalian organs.


Assuntos
Ouriços , Recém-Nascido Prematuro , Animais , Diferenciação Celular/fisiologia , Células Epiteliais , Fibroblastos , Humanos , Recém-Nascido , Pulmão , Organogênese , Receptores Proteína Tirosina Quinases/metabolismo , Células-Tronco/metabolismo
12.
Stem Cells ; 40(7): 691-703, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35429397

RESUMO

Lung maturation is not limited to proper structural development but also includes differentiation and functionality of various highly specialized alveolar cell types. Alveolar type 1 (AT1s) cells occupy nearly 95% of the alveolar surface and are critical for establishing efficient gas exchange in the mature lung. AT1 cells arise from progenitors specified during the embryonic stage as well as alveolar epithelial progenitors expressing surfactant protein C (Sftpcpos cells) during postnatal and adult stages. Previously, we found that Wnt5a, a non-canonical Wnt ligand, is required for differentiation of AT1 cells during the saccular phase of lung development. To further investigate the role of Wnt5a in AT1 cell differentiation, we generated and characterized a conditional Wnt5a gain-of-function mouse model. Neonatal Wnt5a gain-of-function disrupted alveologenesis through inhibition of cell proliferation. In this setting Wnt5a downregulated ß-catenin-dependent canonical Wnt signaling, repressed AT2 (anti-AT2) and promoted AT1 (pro-AT1) lineage-specific gene expression. In addition, we identified 2 subpopulations of Sftpchigh and Sftpclow alveolar epithelial cells. In Sftpclow cells, Wnt5a exhibits pro-AT1 and anti-AT2 effects, concurrent with inhibition of canonical Wnt signaling. Interestingly, in the Sftpchigh subpopulation, although increasing AT1 lineage-specific gene expression, Wnt5a gain-of-function did not change AT2 gene expression, nor inhibit canonical Wnt signaling. Using primary epithelial cells isolated from human fetal lungs, we demonstrate that this property of Wnt5a is evolutionarily conserved. Wnt5a therefore serves as a selective regulator that ensures proper AT1/AT2 balance in the developing lung.


Assuntos
Células Epiteliais Alveolares , Via de Sinalização Wnt , Células Epiteliais Alveolares/metabolismo , Animais , Diferenciação Celular/genética , Células Epiteliais/metabolismo , Expressão Gênica , Humanos , Recém-Nascido , Camundongos , Via de Sinalização Wnt/genética , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
13.
Cells ; 11(7)2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-35406686

RESUMO

NKX2.1 is a master regulator of lung morphogenesis and cell specification; however, interactions of NKX2.1 with various transcription factors to regulate cell-specific gene expression and cell fate in the distal lung remain incompletely understood. FOXO1 is a key regulator of stem/progenitor cell maintenance/differentiation in several tissues but its role in the regulation of lung alveolar epithelial progenitor homeostasis has not been evaluated. We identified a novel role for FOXO1 in alveolar epithelial cell (AEC) differentiation that results in the removal of NKX2.1 from surfactant gene promoters and the subsequent loss of surfactant expression in alveolar epithelial type I-like (AT1-like) cells. We found that the FOXO1 forkhead domain potentiates a loss of surfactant gene expression through an interaction with the NKX2.1 homeodomain, disrupting NKX2.1 binding to the SFTPC promoter. In addition, blocking PI-3K/AKT signaling reduces phosphorylated FOXO-1 (p-FOXO1), allowing accumulated nuclear FOXO1 to interact with NKX2.1 in differentiating AEC. Inhibiting AEC differentiation in vitro with keratinocyte growth factor (KGF) maintained an AT2 cell phenotype through increased PI3K/AKT-mediated FOXO1 phosphorylation, resulting in higher levels of surfactant expression. Together these results indicate that FOXO1 plays a central role in AEC differentiation by directly binding NKX2.1 and suggests an essential role for FOXO1 in mediating AEC homeostasis.


Assuntos
Células Epiteliais Alveolares , Surfactantes Pulmonares , Células Epiteliais Alveolares/metabolismo , Células Epiteliais/metabolismo , Fator 7 de Crescimento de Fibroblastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Surfactantes Pulmonares/metabolismo , Tensoativos/metabolismo
14.
iScience ; 25(2): 103780, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35169685

RESUMO

Many acute and chronic diseases affect the distal lung alveoli. Alveolar epithelial cell (AEC) lines are needed to better model these diseases. We used de-identified human remnant transplant lungs to develop a method to establish AEC lines. The lines grow well in 2-dimensional (2D) culture as epithelial monolayers expressing lung progenitor markers. In 3-dimensional (3D) culture with fibroblasts, Matrigel, and specific media conditions, the cells form alveolar-like organoids expressing mature AEC markers including aquaporin 5 (AQP5), G-protein-coupled receptor class C group 5 member A (GPRC5A), and surface marker HTII280. Single-cell RNA sequencing of an AEC line in 2D versus 3D culture revealed increased cellular heterogeneity and induction of cytokine and lipoprotein signaling in 3D organoids. Our approach yields lung progenitor lines that retain the ability to differentiate along the alveolar cell lineage despite long-term expansion and provides a valuable system to model and study the distal lung in vitro.

15.
J Intensive Care Med ; 37(3): 327-336, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33511898

RESUMO

BACKGROUND: There is a conflicting body of evidence regarding the benefit of vitamin C, thiamine, and hydrocortisone in combination as an adjunctive therapy for sepsis with or without septic shock. We aimed to assess the efficacy of this treatment among predefined populations. METHODS: A literature review of major electronic databases was performed to include randomized controlled trials (RCTs) evaluating vitamin C, thiamine, and hydrocortisone in the treatment of patients with sepsis with or without septic shock in comparison to the control group. RESULTS: Seven studies met our inclusion criteria, and 6 studies were included in the final analysis totaling 839 patients (mean age 64.2 ± 18; SOFA score 8.7 ± 3.3; 46.6% female). There was no significant difference between both groups in long term mortality (Risk Ratio (RR) 1.05; 95% CI 0.85-1.30; P = 0.64), ICU mortality (RR 1.03; 95% CI 0.73-1.44; P = 0.87), or incidence of acute kidney injury (RR 1.05; 95% CI 0.80-1.37; P = 0.75). Furthermore, there was no significant difference in hospital length of stay, ICU length of stay, and ICU free days on day 28 between the intervention and control groups. There was, however, a significant difference in the reduction of SOFA score on day 3 from baseline (MD -0.92; 95% CI -1.43 to -.41; P < 0.05). In a trial sequential analysis for mortality outcomes, our results are inconclusive for excluding lack of benefit of this therapy. CONCLUSION: Among patients with sepsis with or without septic shock, treatment with vitamin C, thiamine, and hydrocortisone was not associated with a significant reduction in mortality, incidence of AKI, hospital and ICU length of stay, or ICU free days on day 28. There was a significant reduction of SOFA score on day 3 post-randomization. Further studies with a larger number of patients are needed to provide further evidence on the efficacy or lack of efficacy of this treatment.


Assuntos
Sepse , Choque Séptico , Idoso , Idoso de 80 Anos ou mais , Ácido Ascórbico/uso terapêutico , Feminino , Humanos , Hidrocortisona , Masculino , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Sepse/tratamento farmacológico , Choque Séptico/tratamento farmacológico , Tiamina/uso terapêutico
16.
Sci Rep ; 11(1): 20144, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635738

RESUMO

Pulmonary function testing (PFT) allows for quantitative analysis of lung function. However, as a result of the coronavirus disease 2019 (COVID-19) pandemic, a majority of international medical societies have postponed PFTs in an effort to mitigate disease transmission, complicating the continuity of care in high-risk patients diagnosed with COVID-19 or preexisting lung pathologies. Here, we describe the development of a non-contact wearable pulmonary sensor for pulmonary waveform analysis, pulmonary volume quantification, and crude thoracic imaging using the eddy current (EC) phenomenon. Statistical regression analysis is performed to confirm the predictive validity of the sensor, and all data are continuously and digitally stored with a sampling rate of 6,660 samples/second. Wearable pulmonary function sensors may facilitate rapid point-of-care monitoring for high-risk individuals, especially during the COVID-19 pandemic, and easily interface with patient hospital records or telehealth services.


Assuntos
COVID-19/diagnóstico , Monitorização Fisiológica/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , Testes de Função Respiratória/instrumentação , Dispositivos Eletrônicos Vestíveis , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Estudos de Viabilidade , Voluntários Saudáveis , Humanos , Controle de Infecções , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Monitorização Fisiológica/métodos , Pandemias/prevenção & controle , Testes de Função Respiratória/métodos , Fenômenos Fisiológicos Respiratórios
17.
iScience ; 24(6): 102551, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34151224

RESUMO

Pulmonary mesenchymal cells are critical players in both the mouse and human during lung development and disease states. They are increasingly recognized as highly heterogeneous, but there is no consensus on subpopulations or discriminative markers for each subtype. We completed scRNA-seq analysis of mesenchymal cells from the embryonic, postnatal, adult and aged fibrotic lungs of mice and humans. We consistently identified and delineated the transcriptome of lipofibroblasts, myofibroblasts, smooth muscle cells, pericytes, mesothelial cells, and a novel population characterized by Ebf1 expression. Subtype selective transcription factors and putative divergence of the clusters during development were described. Comparative analysis revealed orthologous subpopulations with conserved transcriptomic signatures in murine and human lung mesenchymal cells. All mesenchymal subpopulations contributed to matrix gene expression in fibrosis. This analysis would enhance our understanding of mesenchymal cell heterogeneity in lung development, homeostasis and fibrotic disease conditions.

18.
Oncogene ; 40(20): 3624-3632, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33931739

RESUMO

Lung cancer is the leading cause of cancer mortality worldwide and KRAS is the most commonly mutated gene in lung adenocarcinoma (LUAD). The 78-kDa glucose-regulated protein GRP78/BiP is a key endoplasmic reticulum chaperone protein and a major pro-survival effector of the unfolded protein response (UPR). Analysis of the Cancer Genome Atlas database and immunostain of patient tissues revealed that compared to normal lung, GRP78 expression is generally elevated in human lung cancers, including tumors bearing the KRASG12D mutation. To test the requirement of GRP78 in human lung oncogenesis, we generated mouse models containing floxed Grp78 and Kras Lox-Stop-Lox G12D (KrasLSL-G12D) alleles. Simultaneous activation of the KrasG12D allele and knockout of the Grp78 alleles were achieved in the whole lung or selectively in lung alveolar epithelial type 2 cells known to be precursors for adenomas that progress to LUAD. Here we report that GRP78 haploinsufficiency is sufficient to suppress KrasG12D-mediated lung tumor progression and prolong survival. Furthermore, GRP78 knockdown in human lung cancer cell line A427 (KrasG12D/+) leads to activation of UPR and apoptotic markers and loss of cell viability. Our studies provide evidence that targeting GRP78 represents a novel therapeutic approach to suppress mutant KRAS-mediated lung tumorigenesis.


Assuntos
Chaperona BiP do Retículo Endoplasmático/metabolismo , Neoplasias Pulmonares/patologia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Resposta a Proteínas não Dobradas , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Chaperona BiP do Retículo Endoplasmático/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Transdução de Sinais
19.
Epigenetics Chromatin ; 14(1): 23, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001241

RESUMO

BACKGROUND: Selective proteolysis of the histone H3 N-terminal tail (H3NT) is frequently observed during eukaryotic development, generating a cleaved histone H3 (H3cl) product within a small, but significant, portion of the genome. Although increasing evidence supports a regulatory role for H3NT proteolysis in gene activation, the nuclear H3NT proteases and the biological significance of H3NT proteolysis remain largely unknown. RESULTS: In this study, established cell models of skeletal myogenesis were leveraged to investigate H3NT proteolysis. These cells displayed a rapid and progressive accumulation of a single H3cl product within chromatin during myoblast differentiation. Using conventional approaches, we discovered that the canonical extracellular matrix (ECM) protease, matrix metalloproteinase 2 (MMP-2), is the principal H3NT protease of myoblast differentiation that cleaves H3 between K18-Q19. Gelatin zymography demonstrated progressive increases in nuclear MMP-2 activity, concomitant with H3cl accumulation, during myoblast differentiation. RNAi-mediated depletion of MMP-2 impaired H3NT proteolysis and resulted in defective myogenic gene activation and myoblast differentiation. Supplementation of MMP-2 ECM activity in MMP-2-depleted cells was insufficient to rescue defective H3NT proteolysis and myogenic gene activation. CONCLUSIONS: This study revealed that MMP-2 is a novel H3NT protease and the principal H3NT protease of myoblast differentiation. The results indicate that myogenic signaling induces MMP-2-dependent H3NT proteolysis at early stages of myoblast differentiation. Importantly, the results support the necessity of nuclear MMP-2 H3NT protease activity, independent of MMP-2 activity in the ECM, for myogenic gene activation and proficient myoblast differentiation.


Assuntos
Histonas , Metaloproteinase 2 da Matriz , Animais , Diferenciação Celular , Histonas/metabolismo , Metaloproteinase 2 da Matriz/genética , Camundongos , Desenvolvimento Muscular , Peptídeo Hidrolases , Ativação Transcricional
20.
Cells ; 9(11)2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187367

RESUMO

Molecular and functional characterization of alveolar epithelial type I (AT1) cells has been challenging due to difficulty in isolating sufficient numbers of viable cells. Here we performed single-cell RNA-sequencing (scRNA-seq) of tdTomato+ cells from lungs of AT1 cell-specific Aqp5-Cre-IRES-DsRed (ACID);R26tdTomato reporter mice. Following enzymatic digestion, CD31-CD45-E-cadherin+tdTomato+ cells were subjected to fluorescence-activated cell sorting (FACS) followed by scRNA-seq. Cell identity was confirmed by immunofluorescence using cell type-specific antibodies. After quality control, 92 cells were analyzed. Most cells expressed 'conventional' AT1 cell markers (Aqp5, Pdpn, Hopx, Ager), with heterogeneous expression within this population. The remaining cells expressed AT2, club, basal or ciliated cell markers. Integration with public datasets identified three robust AT1 cell- and lung-enriched genes, Ager, Rtkn2 and Gprc5a, that were conserved across species. GPRC5A co-localized with HOPX and was not expressed in AT2 or airway cells in mouse, rat and human lung. GPRC5A co-localized with AQP5 but not pro-SPC or CC10 in mouse lung epithelial cell cytospins. We enriched mouse AT1 cells to perform molecular phenotyping using scRNA-seq. Further characterization of putative AT1 cell-enriched genes revealed GPRC5A as a conserved AT1 cell surface marker that may be useful for AT1 cell isolation.


Assuntos
Células Epiteliais Alveolares/metabolismo , Aquaporina 5/metabolismo , Membrana Celular/metabolismo , Pulmão/citologia , Receptores Acoplados a Proteínas G/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Animais , Biomarcadores/metabolismo , Separação Celular , Humanos , Camundongos Transgênicos , Ratos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...