Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 21(1): 141, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731007

RESUMO

BACKGROUND: Sterols are structural and functional components of eukaryotic cell membranes. Plants produce a complex mixture of sterols, among which ß-sitosterol, stigmasterol, campesterol, and cholesterol in some Solanaceae, are the most abundant species. Many reports have shown that the stigmasterol to ß-sitosterol ratio changes during plant development and in response to stresses, suggesting that it may play a role in the regulation of these processes. In tomato (Solanum lycopersicum), changes in the stigmasterol to ß-sitosterol ratio correlate with the induction of the only gene encoding sterol C22-desaturase (C22DES), the enzyme specifically involved in the conversion of ß-sitosterol to stigmasterol. However, despite the biological interest of this enzyme, there is still a lack of knowledge about several relevant aspects related to its structure and function. RESULTS: In this study we report the subcellular localization of tomato C22DES in the endoplasmic reticulum (ER) based on confocal fluorescence microscopy and cell fractionation analyses. Modeling studies have also revealed that C22DES consists of two well-differentiated domains: a single N-terminal transmembrane-helix domain (TMH) anchored in the ER-membrane and a globular (or catalytic) domain that is oriented towards the cytosol. Although TMH is sufficient for the targeting and retention of the enzyme in the ER, the globular domain may also interact and be retained in the ER in the absence of the N-terminal transmembrane domain. The observation that a truncated version of C22DES lacking the TMH is enzymatically inactive revealed that the N-terminal membrane domain is essential for enzyme activity. The in silico analysis of the TMH region of plant C22DES revealed several structural features that could be involved in substrate recognition and binding. CONCLUSIONS: Overall, this study contributes to expand the current knowledge on the structure and function of plant C22DES and to unveil novel aspects related to plant sterol metabolism.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimologia , Motivos de Aminoácidos , Retículo Endoplasmático/enzimologia , Modelos Moleculares , Fitosteróis/metabolismo , Domínios Proteicos , Estigmasterol/metabolismo , Relação Estrutura-Atividade
2.
Methods Mol Biol ; 2083: 189-197, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31745922

RESUMO

Chromoplast differentiation involves an active synthesis of carotenoids associated with the remodeling of the preexisting plastid membrane systems to form specialized structures involved in the sequestration and storage of the synthesized carotenoids. These subplastidial structures show remarkable morphological differences and seem to be adapted to the accumulation of particular carotenoids in some plant species and organs. At present, very little is known about chromoplast biogenesis and the role of the different suborganellar structures in the synthesis and storage of carotenoids. The combination of classical fractionation methods with the use of biochemical and -omics techniques represents an attractive approach to unravel novel aspects related with the biochemical and cellular mechanisms underlying the biogenesis of the structures involved in the biosynthesis and storage of carotenoids during chromoplast differentiation. Here we describe a combined protocol for the isolation, lysis and fractionation of tomato fruit chromoplast. The fractions obtained are suitable for metabolomics and proteomics analysis.


Assuntos
Fracionamento Químico , Frutas/química , Plastídeos , Solanum lycopersicum/química , Centrifugação com Gradiente de Concentração
3.
Front Plant Sci ; 10: 1162, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611892

RESUMO

Free and glycosylated sterols are both structural components of the plasma membrane that regulate their biophysical properties and consequently different plasma membrane-associated processes such as plant adaptation to stress or signaling. Several reports relate changes in glycosylated sterols levels with the plant response to abiotic stress, but the information about the role of these compounds in the response to biotic stress is scarce. In this work, we have studied the response to the necrotrophic fungus Botrytis cinerea in an Arabidopsis mutant that is severely impaired in steryl glycosides biosynthesis due to the inactivation of the two sterol glucosyltransferases (UGT80A2 and UGT80B1) reported in this plant. This mutant exhibits enhanced resistance against B. cinerea when compared to wild-type plants, which correlates with increased levels of jasmonic acid (JA) and up-regulation of two marker genes (PDF1.2 and PR4) of the ERF branch of the JA signaling pathway. Upon B. cinerea infection, the ugt80A2;B1 double mutant also accumulates higher levels of camalexin, the major Arabidopsis phytoalexin, than wild-type plants. Camalexin accumulation correlates with enhanced transcript levels of several cytochrome P450 camalexin biosynthetic genes, as well as of their transcriptional regulators WRKY33, ANAC042, and MYB51, suggesting that the Botrytis-induced accumulation of camalexin is coordinately regulated at the transcriptional level. After fungus infection, the expression of genes involved in the indole glucosinolate biosynthesis is also up-regulated at a higher degree in the ugt80A2;B1 mutant than in wild-type plants. Altogether, the results of this study show that glycosylated sterols play an important role in the regulation of Arabidopsis response to B. cinerea infection and suggest that this occurs through signaling pathways involving the canonical stress-hormone JA and the tryptophan-derived secondary metabolites camalexin and possibly also indole glucosinolates.

4.
Sci Rep ; 9(1): 4840, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886213

RESUMO

Euphorbia lathyris was proposed about fifty years ago as a potential agroenergetic crop. The tremendous amounts of triterpenes present in its latex has driven investigations for transforming this particular biological fluid into an industrial hydrocarbon source. The huge accumulation of terpenes in the latex of many plant species represent a challenging question regarding cellular homeostasis. In fact, the enzymes, the mechanisms and the controllers that tune the amount of products accumulated in specialized compartments (to fulfill ecological roles) or deposited at important sites (as essential factors) are not known. Here, we have isolated oxidosqualene cyclases highly expressed in the latex of Euphorbia lathyris. This triterpene biosynthetic machinery is made of distinct paralogous enzymes responsible for the massive accumulation of steroidal and non-steroidal tetracyclic triterpenes. More than eighty years after the isolation of butyrospermol from shea butter (Heilbronn IM, Moffet GL, and Spring FS J. Chem. Soc. 1934, 1583), a butyrospermol synthase is characterized in this work using yeast and in folia heterologous expression assays.


Assuntos
Biocombustíveis , Euphorbia/enzimologia , Transferases Intramoleculares/metabolismo , Látex/metabolismo , Proteínas de Plantas/metabolismo , Ensaios Enzimáticos , Euphorbia/química , Perfilação da Expressão Gênica , Transferases Intramoleculares/genética , Transferases Intramoleculares/isolamento & purificação , Látex/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Plantas Geneticamente Modificadas , Nicotiana/genética , Nicotiana/metabolismo , Triterpenos/metabolismo
5.
Front Plant Sci ; 9: 588, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868054

RESUMO

Steryl esters (SEs) serve as a storage pool of sterols that helps to maintain proper levels of free sterols (FSs) in cell membranes throughout plant growth and development, and participates in the recycling of FSs and fatty acids released from cell membranes in aging tissues. SEs are synthesized by sterol acyltransferases, a family of enzymes that catalyze the transfer of fatty acil groups to the hydroxyl group at C-3 position of the sterol backbone. Sterol acyltransferases are categorized into acyl-CoA:sterol acyltransferases (ASAT) and phospholipid:sterol acyltransferases (PSAT) depending on whether the fatty acyl donor substrate is a long-chain acyl-CoA or a phospolipid. Until now, only Arabidopsis ASAT and PSAT enzymes (AtASAT1 and AtPSAT1) have been cloned and characterized in plants. Here we report the identification, cloning, and functional characterization of the tomato (Solanum lycopersicum cv. Micro-Tom) orthologs. SlPSAT1 and SlASAT1 were able to restore SE to wild type levels in the Arabidopsis psat1-2 and asat1-1 knock-out mutants, respectively. Expression of SlPSAT1 in the psat1-2 background also prevented the toxicity caused by an external supply of mevalonate and the early senescence phenotype observed in detached leaves of this mutant, whereas expression of SlASAT1 in the asat1-1 mutant revealed a clear substrate preference of the tomato enzyme for the sterol precursors cycloartenol and 24-methylene cycloartanol. Subcellular localization studies using fluorescently tagged SlPSAT1 and SlASAT1 proteins revealed that SlPSAT1 localize in cytoplasmic lipid droplets (LDs) while, in contrast to the endoplasmic reticulum (ER) localization of AtASAT1, SlASAT1 resides in the plasma membrane (PM). The possibility that PM-localized SlASAT1 may act catalytically in trans on their sterol substrates, which are presumably embedded in the ER membrane, is discussed. The widespread expression of SlPSAT1 and SlASAT1 genes in different tomato organs together with their moderate transcriptional response to several stresses suggests a dual role of SlPSAT1 and SlASAT1 in tomato plant and fruit development and the adaptive responses to stress. Overall, this study contributes to enlarge the current knowledge on plant sterol acyltransferases and set the basis for further studies aimed at understanding the role of SE metabolism in tomato plant growth and development.

6.
Prog Lipid Res ; 70: 62-93, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29679619

RESUMO

Carotenoids are lipophilic isoprenoid compounds synthesized by all photosynthetic organisms and some non-photosynthetic prokaryotes and fungi. With some notable exceptions, animals (including humans) do not produce carotenoids de novo but take them in their diets. In photosynthetic systems carotenoids are essential for photoprotection against excess light and contribute to light harvesting, but perhaps they are best known for their properties as natural pigments in the yellow to red range. Carotenoids can be associated to fatty acids, sugars, proteins, or other compounds that can change their physical and chemical properties and influence their biological roles. Furthermore, oxidative cleavage of carotenoids produces smaller molecules such as apocarotenoids, some of which are important pigments and volatile (aroma) compounds. Enzymatic breakage of carotenoids can also produce biologically active molecules in both plants (hormones, retrograde signals) and animals (retinoids). Both carotenoids and their enzymatic cleavage products are associated with other processes positively impacting human health. Carotenoids are widely used in the industry as food ingredients, feed additives, and supplements. This review, contributed by scientists of complementary disciplines related to carotenoid research, covers recent advances and provides a perspective on future directions on the subjects of carotenoid metabolism, biotechnology, and nutritional and health benefits.


Assuntos
Biotecnologia , Carotenoides/metabolismo , Saúde , Ciências da Nutrição , Animais , Produtos Agrícolas , Humanos
7.
Prog Lipid Res ; 67: 27-37, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28666916

RESUMO

In plants, sterols are found in free form (free sterols, FSs) and conjugated as steryl esters (SEs), steryl glycosides (SGs) and acyl steryl glycosides (ASGs). Conjugated sterols are ubiquitously found in plants but their relative contents highly differ among species and their profile may change in response to developmental and environmental cues. SEs play a central role in membrane sterol homeostasis and also represent a storage pool of sterols in particular plant tissues. SGs and ASGs are main components of the plant plasma membrane (PM) that specifically accumulate in lipid rafts, PM microdomains known to mediate many relevant cellular processes. There are increasing evidences supporting the involvement of conjugated sterols in plant stress responses. In spite of this, very little is known about their metabolism. At present, only a limited number of genes encoding enzymes participating in conjugated sterol metabolism have been cloned and characterized in plants. The aim of this review is to update the current knowledge about the tissue and cellular distribution of conjugated sterols in plants and the enzymes involved in their biosynthesis. We also discuss novel aspects on the role of conjugated sterols in plant development and stress responses recently unveiled using forward- and reverse-genetic approaches.


Assuntos
Fitosteróis/metabolismo , Plantas/metabolismo , Glicosilação , Hidrólise , Fitosteróis/química , Estresse Fisiológico
8.
Front Plant Sci ; 8: 984, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28649260

RESUMO

Sterol glycosyltransferases (SGTs) catalyze the glycosylation of the free hydroxyl group at C-3 position of sterols to produce sterol glycosides. Glycosylated sterols and free sterols are primarily located in cell membranes where in combination with other membrane-bound lipids play a key role in modulating their properties and functioning. In contrast to most plant species, those of the genus Solanum contain very high levels of glycosylated sterols, which in the case of tomato may account for more than 85% of the total sterol content. In this study, we report the identification and functional characterization of the four members of the tomato (Solanum lycopersicum cv. Micro-Tom) SGT gene family. Expression of recombinant SlSGT proteins in E. coli cells and N. benthamiana leaves demonstrated the ability of the four enzymes to glycosylate different sterol species including cholesterol, brassicasterol, campesterol, stigmasterol, and ß-sitosterol, which is consistent with the occurrence in their primary structure of the putative steroid-binding domain found in steroid UDP-glucuronosyltransferases and the UDP-sugar binding domain characteristic for a superfamily of nucleoside diphosphosugar glycosyltransferases. Subcellular localization studies based on fluorescence recovery after photobleaching and cell fractionation analyses revealed that the four tomato SGTs, like the Arabidopsis SGTs UGT80A2 and UGT80B1, localize into the cytosol and the PM, although there are clear differences in their relative distribution between these two cell fractions. The SlSGT genes have specialized but still largely overlapping expression patterns in different organs of tomato plants and throughout the different stages of fruit development and ripening. Moreover, they are differentially regulated in response to biotic and abiotic stress conditions. SlSGT4 expression increases markedly in response to osmotic, salt, and cold stress, as well as upon treatment with abscisic acid and methyl jasmonate. Stress-induced SlSGT2 expression largely parallels that of SlSGT4. On the contrary, SlSGT1 and SlSGT3 expression remains almost unaltered under the tested stress conditions. Overall, this study contributes to broaden the current knowledge on plant SGTs and provides support to the view that tomato SGTs play overlapping but not completely redundant biological functions involved in mediating developmental and stress responses.

9.
Front Plant Sci ; 6: 496, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26236317

RESUMO

Chlororespiration is a respiratory process located in chloroplast thylakoids which consists in an electron transport chain from NAD(P)H to oxygen. This respiratory chain involves the NAD(P)H dehydrogenase complex, the plastoquinone pool and the plastid terminal oxidase (PTOX), and it probably acts as a safety valve to prevent the over-reduction of the photosynthetic machinery in stress conditions. The existence of a similar respiratory activity in non-photosynthetic plastids has been less studied. Recently, it has been reported that tomato fruit chromoplasts present an oxygen consumption activity linked to ATP synthesis. Etioplasts and amyloplasts contain several electron carriers and some subunits of the ATP synthase, so they could harbor a similar respiratory process. This review provides an update on the study about respiratory processes in chromoplasts, identifying the major gaps that need to be addressed in future research. It also reviews the proteomic data of etioplasts and amyloplasts, which suggest the presence of a respiratory electron transport chain in these plastids.

10.
Theor Appl Genet ; 128(10): 2019-35, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26163766

RESUMO

KEY MESSAGE: QTL and candidate genes associated to fruit quality traits have been identified in a tomato genetic map derived from Solanum pimpinellifolium L., providing molecular tools for marker-assisted breeding. The study of genetic, physiological, and molecular pathways involved in fruit development and ripening has considered tomato as the model fleshy-fruited species par excellence. Fruit quality traits regarding organoleptic and nutritional properties are major goals for tomato breeding programs since they largely decide the acceptance of tomato in both fresh and processing markets. Here we report the genetic mapping of single-locus and epistatic quantitative trait loci (QTL) associated to the fruit size and content of sugars, acids, vitamins, and carotenoids from the characterization of a RIL population derived from the wild-relative Solanum pimpinellifolium TO-937. A genetic map composed of 353 molecular markers including 13 genes regulating fruit and developmental traits was generated, which spanned 1007 cM with an average distance between markers of 2.8 cM. Genetic analyses indicated that fruit quality traits analyzed in this work exhibited transgressive segregation and that additive and epistatic effects are the major genetic basis of fruit quality traits. Moreover, most mapped QTL showed environment interaction effects. FrW7.1 fruit size QTL co-localized with QTL involved in soluble solid, vitamin C, and glucose contents, dry weight/fresh weight, and most importantly with the Sucrose Phosphate Synthase gene, suggesting that polymorphisms in this gene could influence genetic variation in several fruit quality traits. In addition, 1-deoxy-D-xylulose 5-phosphate synthase and Tocopherol cyclase genes were identified as candidate genes underlying QTL variation in beta-carotene and vitamin C. Together, our results provide useful genetic and molecular information regarding fruit quality and new chances for tomato breeding by implementing marker-assisted selection.


Assuntos
Qualidade dos Alimentos , Frutas , Locos de Características Quantitativas , Solanum lycopersicum/genética , Solanum/genética , Ácido Ascórbico/análise , Mapeamento Cromossômico , DNA de Plantas/genética , Frutas/química , Interação Gene-Ambiente , Genes de Plantas , Ligação Genética , Marcadores Genéticos , Glucose/análise , Endogamia , Melhoramento Vegetal , beta Caroteno/análise
11.
Plant Mol Biol ; 88(3): 301-11, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25957952

RESUMO

Temperature-induced lipocalins (TILs) play an essential role in the response of plants to different abiotic stresses. In agreement with their proposed role in protecting membrane lipids, TILs have been reported to be associated to cell membranes. However, TILs show an overall hydrophilic character and do not contain any signal for membrane targeting nor hydrophobic sequences that could represent transmembrane domains. Arabidopsis TIL (AtTIL) is considered the ortholog of human ApoD, a protein known to associate to membranes through a short hydrophobic loop protruding from strands 5 and 6 of the lipocalin ß-barrel. An equivalent loop (referred to as HPR motif) is also present between ß-strands 5 and 6 of TILs. The HPR motif, which is highly conserved among TIL proteins, extends over as short stretch of eight amino acids and contains four invariant proline residues. Subcellular localization studies have shown that TILs are targeted to a variety of cell membranes and organelles. We have also found that the HPR motif is necessary and sufficient for the intracellular targeting of TILs. Modeling studies suggest that the HPR motif may directly anchor TILs to cell membranes, favoring in this way further contact with the polar group of membrane lipids. However, some particular features of the HPR motif open the possibility that targeting of TILs to cell membranes could be mediated by interaction with other proteins. The functional analysis of the HPR motif unveils the existence of novel mechanisms involved in the intracellular targeting of proteins in plants.


Assuntos
Lipocalinas/metabolismo , Prolina/metabolismo , Temperatura , Sequência de Bases , Primers do DNA , Interações Hidrofóbicas e Hidrofílicas , Lipocalinas/química , Reação em Cadeia da Polimerase , Frações Subcelulares/metabolismo
12.
Curr Opin Plant Biol ; 25: 17-22, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25909859

RESUMO

The common metabolic precursors used for the production of all isoprenoid compounds are synthesized by two unrelated pathways in plants. The methylerythritol 4-phosphate (MEP) pathway produces these precursors in the plastid, whereas the biosynthesis of non-plastidial isoprenoids relies on the operation of the mevalonic acid (MVA) pathway. Despite the physical separation of the two pathways, some interaction exists at molecular and metabolic levels. Recent results have provided strong evidence that a high degree of control over each individual pathway takes place at the post-translational level. In particular, new mechanisms regulating the levels and activity of rate-determining enzymes have been unveiled. Current challenges include the study of the subcellular operation of the MEP and MVA pathways and their coordination with upstream and downstream pathways that supply their substrates and consume their products.


Assuntos
Eritritol/análogos & derivados , Ácido Mevalônico/metabolismo , Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Fosfatos Açúcares/metabolismo , Terpenos/metabolismo , Eritritol/metabolismo , Redes e Vias Metabólicas , Plantas/química
13.
Adv Biochem Eng Biotechnol ; 148: 3-18, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25523226

RESUMO

Prokaryotic organisms (archaea and eubacteria) are found in all habitats where life exists on our planet. This would not be possible without the astounding biochemical plasticity developed by such organisms. Part of the metabolic diversity of prokaryotes was transferred to eukaryotic cells when endosymbiotic prokaryotes became mitochondria and plastids but also in a large number of horizontal gene transfer episodes. A group of metabolites produced by all free-living organisms is terpenoids (also known as isoprenoids). In prokaryotes, terpenoids play an indispensable role in cell-wall and membrane biosynthesis (bactoprenol, hopanoids), electron transport (ubiquinone, menaquinone), or conversion of light into chemical energy (chlorophylls, bacteriochlorophylls, rhodopsins, carotenoids), among other processes. But despite their remarkable structural and functional diversity, they all derive from the same metabolic precursors. Here we describe the metabolic pathways producing these universal terpenoid units and provide a complete picture of the main terpenoid compounds found in prokaryotic organisms.


Assuntos
Terpenos/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Bacterioclorofilas/química , Carotenoides/química , Membrana Celular/metabolismo , Parede Celular/metabolismo , Clorofila/química , Desenho de Fármacos , Fungos/metabolismo , Mitocôndrias/metabolismo , Plastídeos/metabolismo , Rodopsina/química , Terpenos/química , Ubiquinona/química , Vitamina K 2/química
14.
Plant Physiol ; 166(2): 920-33, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25125503

RESUMO

During tomato (Solanum lycopersicum) fruit ripening, chloroplasts differentiate into photosynthetically inactive chromoplasts. It was recently reported that tomato chromoplasts can synthesize ATP through a respiratory process called chromorespiration. Here we show that chromoplast oxygen consumption is stimulated by the electron donors NADH and NADPH and is sensitive to octyl gallate (Ogal), a plastidial terminal oxidase inhibitor. The ATP synthesis rate of isolated chromoplasts was dependent on the supply of NAD(P)H and was fully inhibited by Ogal. It was also inhibited by the proton uncoupler carbonylcyanide m-chlorophenylhydrazone, suggesting the involvement of a chemiosmotic gradient. In addition, ATP synthesis was sensitive to 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, a cytochrome b6f complex inhibitor. The possible participation of this complex in chromorespiration was supported by the detection of one of its components (cytochrome f) in chromoplasts using immunoblot and immunocytochemical techniques. The observed increased expression of cytochrome c6 during ripening suggests that it could act as electron acceptor of the cytochrome b6f complex in chromorespiration. The effects of Ogal on respiration and ATP levels were also studied in tissue samples. Oxygen uptake of mature green fruit and leaf tissues was not affected by Ogal, but was inhibited increasingly in fruit pericarp throughout ripening (up to 26% in red fruit). Similarly, Ogal caused a significant decrease in ATP content of red fruit pericarp. The number of energized mitochondria, as determined by confocal microscopy, strongly decreased in fruit tissue during ripening. Therefore, the contribution of chromoplasts to total fruit respiration appears to increase in late ripening stages.


Assuntos
Plastídeos/metabolismo , Solanum lycopersicum/metabolismo , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/metabolismo , Citocromos/metabolismo , Metabolismo Energético , Solanum lycopersicum/fisiologia , NAD/metabolismo , NADP/metabolismo , Plastídeos/fisiologia
15.
Methods Mol Biol ; 1153: 21-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24777788

RESUMO

The enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase catalyzes the NADPH-mediated reductive deacylation of HMG-CoA to mevalonic acid, which is the first committed step of the mevalonate pathway for isoprenoid biosynthesis. In agreement with its key regulatory role in the pathway, plant HMG-CoA reductase is modulated by many diverse external stimuli and endogenous factors and can be detected to variable levels in every plant tissue. A fine determination of HMG-CoA reductase activity levels is required to understand its contribution to plant development and adaptation to changing environmental conditions. Here, we report a procedure to reliably determine HMG-CoA reductase activity in plants. The method includes the sample collection and homogenization strategies as well as the specific activity determination based on a classical radiochemical assay.


Assuntos
Arabidopsis/enzimologia , Ensaios Enzimáticos/métodos , Hidroximetilglutaril-CoA Redutases/metabolismo , Cromatografia em Camada Fina , Hidroximetilglutaril-CoA Redutases/isolamento & purificação , Especificidade por Substrato
16.
Plant J ; 74(1): 74-85, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23302027

RESUMO

Chromoplasts are non-photosynthetic plastids specialized in the synthesis and accumulation of carotenoids. During fruit ripening, chloroplasts differentiate into photosynthetically inactive chromoplasts in a process characterized by the degradation of the thylakoid membranes, and by the active synthesis and accumulation of carotenoids. This transition renders chromoplasts unable to photochemically synthesize ATP, and therefore these organelles need to obtain the ATP required for anabolic processes through alternative sources. It is widely accepted that the ATP used for biosynthetic processes in non-photosynthetic plastids is imported from the cytosol or is obtained through glycolysis. In this work, however, we show that isolated tomato (Solanum lycopersicum) fruit chromoplasts are able to synthesize ATP de novo through a respiratory pathway using NADPH as an electron donor. We also report the involvement of a plastidial ATP synthase harboring an atypical γ-subunit induced during ripening, which lacks the regulatory dithiol domain present in plant and algae chloroplast γ-subunits. Silencing of this atypical γ-subunit during fruit ripening impairs the capacity of isolated chromoplast to synthesize ATP de novo. We propose that the replacement of the γ-subunit present in tomato leaf and green fruit chloroplasts by the atypical γ-subunit lacking the dithiol domain during fruit ripening reflects evolutionary changes, which allow the operation of chromoplast ATP synthase under the particular physiological conditions found in this organelle.


Assuntos
Trifosfato de Adenosina/biossíntese , Plastídeos/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Solanum lycopersicum/enzimologia , Sequência de Aminoácidos , Frutas/enzimologia , Frutas/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Dados de Sequência Molecular , NADP/metabolismo , Oxigênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ATPases Translocadoras de Prótons/antagonistas & inibidores , ATPases Translocadoras de Prótons/genética
17.
Gene ; 524(1): 40-53, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23154062

RESUMO

The synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into, at least, three specialized subfamilies. Arabidopsis thaliana contains three genes encoding proteins with similarity to DXS, including the well-known DXS1/CLA1 gene, which clusters within subfamily I. The remaining proteins, initially named DXS2 and DXS3, have not yet been characterized. Here we report the expression and functional analysis of A. thaliana DXS2. Unexpectedly, the expression of DXS2 failed to rescue Escherichia coli and A. thaliana mutants defective in DXS activity. Coherently, we found that DXS activity was negligible in vitro, being renamed as DXL1 following recent nomenclature recommendation. DXL1 is targeted to plastids as DXS1, but shows a distinct expression pattern. The phenotypic analysis of a DXL1 defective mutant revealed that the function of the encoded protein is not essential for growth and development. Evolutionary analyses indicated that DXL1 emerged from DXS1 through a recent duplication apparently specific of the Brassicaceae lineage. Divergent selective constraints would have affected a significant fraction of sites after diversification of the paralogues. Furthermore, amino acids subjected to divergent selection and likely critical for functional divergence through the acquisition of a novel, although not yet known, biochemical function, were identified. Our results provide with the first evidences of functional specialization at both the regulatory and biochemical level within the plant DXS family.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Evolução Molecular , Genes de Plantas , Transferases/genética , Sequência de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , DNA Complementar/genética , DNA Complementar/metabolismo , Ativação Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Modelos Genéticos , Dados de Sequência Molecular , Pentosefosfatos/metabolismo , Fenótipo , Filogenia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plastídeos/enzimologia , Plastídeos/genética , Transferases/metabolismo , Transformação Genética
18.
PLoS One ; 7(8): e43775, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22928031

RESUMO

A functional 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is required for isoprenoid biosynthesis and hence survival in Escherichia coli and most other bacteria. In the first two steps of the pathway, MEP is produced from the central metabolic intermediates pyruvate and glyceraldehyde 3-phosphate via 1-deoxy-D-xylulose 5-phosphate (DXP) by the activity of the enzymes DXP synthase (DXS) and DXP reductoisomerase (DXR). Because the MEP pathway is absent from humans, it was proposed as a promising new target to develop new antibiotics. However, the lethal phenotype caused by the deletion of DXS or DXR was found to be suppressed with a relatively high efficiency by unidentified mutations. Here we report that several mutations in the unrelated genes aceE and ribB rescue growth of DXS-defective mutants because the encoded enzymes allowed the production of sufficient DXP in vivo. Together, this work unveils the diversity of mechanisms that can evolve in bacteria to circumvent a blockage of the first step of the MEP pathway.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Choque Térmico/genética , Transferases Intramoleculares/genética , Viabilidade Microbiana/genética , Mutação , Complexo Piruvato Desidrogenase/genética , Terpenos/metabolismo , Escherichia coli/citologia , Escherichia coli/fisiologia , Pentosefosfatos/biossíntese , Transferases/deficiência
19.
Plant Methods ; 8(1): 1, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22243738

RESUMO

BACKGROUND: Carotenoids are the most widespread group of pigments found in nature. In addition to their role in the physiology of the plant, carotenoids also have nutritional relevance as their incorporation in the human diet provides health benefits. In non-photosynthetic tissues, carotenoids are synthesized and stored in specialized plastids called chromoplasts. At present very little is known about the origin of the metabolic precursors and cofactors required to sustain the high rate of carotenoid biosynthesis in these plastids. Recent proteomic data have revealed a number of biochemical and metabolic processes potentially operating in fruit chromoplasts. However, considering that chloroplast to chromoplast differentiation is a very rapid process during fruit ripening, there is the possibility that some of the proteins identified in the proteomic analysis could represent remnants no longer having a functional role in chromoplasts. Therefore, experimental validation is necessary to prove whether these predicted processes are actually operative in chromoplasts. RESULTS: A method has been established for high-yield purification of tomato fruit chromoplasts suitable for metabolic studies. Radiolabeled precursors were efficiently incorporated and further metabolized in isolated chromoplast. Analysis of labeled lipophilic compounds has revealed that lipid biosynthesis is a very efficient process in chromoplasts, while the relatively low incorporation levels found in carotenoids suggest that lipid production may represent a competing pathway for carotenoid biosynthesis. Malate and pyruvate are efficiently converted into acetyl-CoA, in agreement with the active operation of the malic enzyme and the pyruvate dehydrogenase complex in the chromoplast. Our results have also shown that isolated chromoplasts can actively sustain anabolic processes without the exogenous supply of ATP, thus suggesting that these organelles may generate this energetic cofactor in an autonomous way. CONCLUSIONS: We have set up a method for high yield purification of intact tomato fruit chromoplasts suitable for precursor uptake assays and metabolic analyses. Using targeted radiolabeled precursors we have been able to unravel novel biochemical and metabolic aspects related with carotenoid and lipid biosynthesis in tomato fruit chromoplasts. The reported chromoplast system could represent a valuable platform to address the validation and characterization of functional processes predicted from recent transcriptomic and proteomic data.

20.
Plant Signal Behav ; 6(8): 1127-31, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21701259

RESUMO

The enzyme HMG-CoA reductase (HMGR) has a key regulatory role in the mevalonate pathway for isoprenoid biosynthesis, critical not only for normal plant development, but also for the adaptation to demanding environmental conditions. Consistent with this notion, plant HMGR is modulated by many diverse endogenous signals and external stimuli. Protein phosphatase 2A (PP2A) is involved in auxin, abscisic acid, ethylene and brassinosteroid signaling and now emerges as a positive and negative multilevel regulator of plant HMGR, both during normal growth and in response to a variety of stress conditions. The interaction with HMGR is mediated by B" regulatory subunits of PP2A, which are also calcium binding proteins. The new discoveries uncover the potential of PP2A to integrate developmental and calcium-mediated environmental signals in the control of plant HMGR.


Assuntos
Cálcio/metabolismo , Hidroximetilglutaril-CoA Redutases/metabolismo , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Proteína Fosfatase 2/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA