Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543459

RESUMO

The study demonstrates the significant enhancement in oil production from a Romanian oil field using alkali-polymer (AP) flooding for reactive viscous oil. We conducted comprehensive interfacial tension (IFT) measurements across various alkali and AP concentrations, along with phase behavior assessments. Micromodel flooding experiments were used to examine pore-scale effects and select appropriate chemical concentrations. We tested displacement efficiency at the core level and experimented with different sequences and concentrations of alkali and polymers to minimize costs while maximizing the additional recovery of reactive viscous oil. The IFT analysis revealed that saponification at the oil-alkali interface significantly lowers IFT, but IFT gradually increases as soap diffuses away from the interface. Micromodels indicated that polymer or alkali injection alone achieve only minimal incremental recovery beyond waterflooding. However, AP flooding significantly enhanced incremental oil recovery by efficiently moving the mobilized oil with the viscous fluid and increasing exposure of more oil to the alkali solution. Coreflood experiments corroborated these findings. We also explored how divalent cations influence polymer concentration selection, finding that softening the injection brine significantly increased the viscosity of the AP slug.

2.
Polymers (Basel) ; 14(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36559875

RESUMO

In this work, we present various evaluations that are key prior field applications. The workflow combines laboratory approaches to optimize the usage of polymers in combination with alkali to improve project economics. We show that the performance of AP floods can be optimized by making use of lower polymer viscosities during injection but increasing polymer viscosities in the reservoir owing to "aging" of the polymers at high pH. Furthermore, AP conditions enable the reduction of polymer retention in the reservoir, decreasing the utility factors (kg polymers injected/incremental bbl. produced). We used aged polymer solutions to mimic the conditions deep in the reservoir and compared the displacement efficiencies and the polymer adsorption of non-aged and aged polymer solutions. The aging experiments showed that polymer hydrolysis increases at high pH, leading to 60% higher viscosity in AP conditions. Micromodel experiments in two-layer chips depicted insights into the displacement, with reproducible recoveries of 80% in the high-permeability zone and 15% in the low-permeability zone. The adsorption for real rock using 8 TH RSB brine was measured to be approximately half of that in the case of Berea: 27 µg/g vs. 48 µg/g, respectively. The IFT values obtained for the AP lead to very low values, reaching 0.006 mN/m, while for the alkali, they reach only 0.44 mN/m. The two-phase experiments confirmed that lower-concentration polymer solutions aged in alkali show the same displacement efficiency as non-aged polymers with higher concentrations. Reducing the polymer concentration leads to a decrease in EqUF by 40%. If alkali-polymer is injected immediately without a prior polymer slug, then the economics are improved by 37% compared with the polymer case. Hence, significant cost savings can be realized capitalizing on the fast aging in the reservoir. Due to the low polymer retention in AP floods, fewer polymers are consumed than in conventional polymer floods, significantly decreasing the utility factor.

3.
Polymers (Basel) ; 14(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36559880

RESUMO

This work uses micromodel, core floods and Field-Flow Fractionation (FFF) evaluations to estimate the behaviour and key elements for selecting polymers to address heterogenous reservoirs. One of the approaches was to construct two-layered micromodels differing six times in permeability and based on the physical characteristics of a Bentheimer sandstone. Further, the impacts of injectivity and displacement efficiency of the chosen polymers were then assessed using single- and two-phase core tests. Moreover, FFF was also used to assess the polymers' conformity, gyration radii, and molecular weight distribution. For the polymer selection for field application, we weighted on the good laboratory performance in terms of sweep efficiency improvement, injectivity, and propagation. Based on the results, polymer B (highest MWD) performed the poorest. Full spectrum MWD measurement using Field-Flow Fractionation is a key in understanding polymer behavior. Heterogenous micromodel evaluations provided consistent data to subsequent core flood evaluations and were in alignment with FFF indications. Single-phase core floods performed higher injection velocities (5 m/d) in combination of FFF showed that narrower MWD distribution polymers (polymers A and C) have less retention and better injectivity. Two-phase core floods performed at low, reservoir representative velocities (1 ft/d) showed that Polymer B could not be injected, with pressure response staying at high values even when chase brine is injected. Adsorption values for all tested polymers at these conditions were high, however highest were observed in the case of polymer B. Overall, for the polymer selection for field application, we weighted on the good laboratory performance in terms of sweep efficiency improvement, injectivity, polymer retention, and propagation; all accounted in this work.

4.
Polymers (Basel) ; 14(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35160592

RESUMO

We have studied wettability alterations through imbibition/flooding and their synergy with interfacial tension (IFT) for alkalis, nanoparticles and polymers. Thus, the total acid number (TAN) of oil may determine the wetting-state of the reservoir and influence recovery and IFT. Data obtained demonstrate how the oil TAN number (low and high), chemical agent and reservoir mineralogy influence fluid-fluid and rock-fluid interactions. We used a laboratory evaluation workflow that combines complementary assessments such as spontaneous imbibition tests, IFT, contact angle measurements and selected core floods. The workflow evaluates wettability alteration, IFT changes and recovery when injecting alkalis, nanoparticles and polymers, or a combination of them. Dynamics and mechanisms of imbibition were tracked by analyzing the recovery change with the inverse bond number. Three sandstone types (outcrops) were used, which mainly differed in clay content and permeability. Oils with low and high TANs were used, the latter from the potential field pilot 16 TH reservoir in the Matzen field (Austria). We have investigated and identified some of the conditions leading to increases in recovery rates as well as ultimate recovery by the imbibition of alkali, nanoparticle and polymer aqueous phases. This study presents novel data on the synergy of IFT, contact angle Amott imbibition, and core floods for the chemical processes studied.

5.
Nanomaterials (Basel) ; 11(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34578671

RESUMO

We investigated the usage of two silica nanomaterials (surface-modified) and alkali in enhanced oil recovery through Amott spontaneous imbibition tests, interfacial tension (IFT) measurements, and phase behavior. We evaluated the wettability alteration induced by the synergy between nanomaterials and alkali. Moreover, numerical analysis of the results was carried out using inverse Bond number and capillary diffusion coefficient. Evaluations included the use of Berea and Keuper outcrop material, crude oil with different total acid numbers (TAN), and Na2CO3 as alkaline agent. Data showed that nanomaterials can reduce the IFT, with surface charge playing an important role in this process. In synergy with alkali, the use of nanomaterials led to low-stable IFT values. This effect was also seen in the phase behavior tests, where brine/oil systems with lower IFT exhibited better emulsification. Nanomaterials' contribution to the phase behavior was mainly the stabilization of the emulsion middle phase. The influence of TAN number on the IFT and phase behavior was prominent especially when combined with alkali. Amott spontaneous imbibition resulted in additional oil recovery ranging from 4% to 50% above the baseline, which was confirmed by inverse Bond number analysis. High recoveries were achieved using alkali and nanomaterials; these values were attributed to wettability alteration that accelerated the imbibition kinetics as seen in capillary diffusion coefficient analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...