Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2309841121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442151

RESUMO

The transporter associated with antigen processing (TAP) is a key player in the major histocompatibility class I-restricted antigen presentation and an attractive target for immune evasion by viruses. Bovine herpesvirus 1 impairs TAP-dependent antigenic peptide transport through a two-pronged mechanism in which binding of the UL49.5 gene product to TAP both inhibits peptide transport and triggers its proteasomal degradation. How UL49.5 promotes TAP degradation has, so far, remained unknown. Here, we use high-content siRNA and genome-wide CRISPR-Cas9 screening to identify CLR2KLHDC3 as the E3 ligase responsible for UL49.5-triggered TAP disposal. We propose that the C terminus of UL49.5 mimics a C-end rule degron that recruits the E3 to TAP and engages the cullin-RING E3 ligase in endoplasmic reticulum-associated degradation.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Degrons , Herpesviridae , Apresentação de Antígeno , Citomegalovirus , Degradação Associada com o Retículo Endoplasmático , Proteínas de Membrana Transportadoras , Peptídeos , Ubiquitina-Proteína Ligases/genética , Herpesviridae/fisiologia
2.
bioRxiv ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37808699

RESUMO

The transporter associated with antigen processing (TAP) is a key player in the MHC class I-restricted antigen presentation and an attractive target for immune evasion by viruses. Bovine herpesvirus 1 (BoHV-1) impairs TAP-dependent antigenic peptide transport through a two-pronged mechanism in which binding of the UL49.5 gene product to TAP both inhibits peptide transport and promotes its proteasomal degradation. How UL49.5 promotes TAP degradation is unknown. Here, we use high-content siRNA and genome-wide CRISPR-Cas9 screening to identify CLR2KLHDC3 as the E3 ligase responsible for UL49.5-triggered TAP disposal in human cells. We propose that the C-terminus of UL49.5 mimics a C-end rule degron that recruits the E3 to TAP and engages the CRL2 E3 in ER-associated degradation.

3.
J Vis Exp ; (195)2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37212587

RESUMO

The vast majority of cellular processes require a continuous supply of energy, the most common carrier of which is the ATP molecule. Eukaryotic cells produce most of their ATP in the mitochondria by oxidative phosphorylation. Mitochondria are unique organelles because they have their own genome that is replicated and passed on to the next generation of cells. In contrast to the nuclear genome, there are multiple copies of the mitochondrial genome in the cell. The detailed study of the mechanisms responsible for the replication, repair, and maintenance of the mitochondrial genome is essential for understanding the proper functioning of mitochondria and whole cells under both normal and disease conditions. Here, a method that allows the high-throughput quantification of the synthesis and distribution of mitochondrial DNA (mtDNA) in human cells cultured in vitro is presented. This approach is based on the immunofluorescence detection of actively synthesized DNA molecules labeled by 5-bromo-2'-deoxyuridine (BrdU) incorporation and the concurrent detection of all the mtDNA molecules with anti-DNA antibodies. Additionally, the mitochondria are visualized with specific dyes or antibodies. The culturing of cells in a multi-well format and the utilization of an automated fluorescence microscope make it easier to study the dynamics of mtDNA and the morphology of mitochondria under a variety of experimental conditions in a relatively short time.


Assuntos
DNA Mitocondrial , Genoma Mitocondrial , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Bromodesoxiuridina/metabolismo , Trifosfato de Adenosina/metabolismo , Replicação do DNA
4.
Wiley Interdiscip Rev RNA ; 13(3): e1690, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34498404

RESUMO

Mitochondria play a pivotal role in numerous cellular processes. One of them is regulation of the innate immune pathway. In this instance, mitochondria function in two different aspects of regulatory mechanisms. First, mitochondria are part of the antiviral signaling cascade that is triggered in the cytoplasm and transmitted to effector proteins through mitochondria-localized proteins. Second, mitochondria can become an endogenous source of innate immune stimuli. Under some pathophysiological conditions, mitochondria release to the cytoplasm immunogenic factors, such as mitochondrial nucleic acids. Here, we focus on immunogenic mitochondrial double-stranded RNA (mt-dsRNA) and its origin and metabolism. We discuss factors that are responsible for regulating mt-dsRNA and its escape from mitochondria, emphasizing the contribution of polynucleotide phosphorylase (PNPase, PNPT1). Finally, we review current knowledge of the role of PNPase in human health and disease. This article is categorized under: RNA in Disease and Development > RNA in Disease.


Assuntos
Polirribonucleotídeo Nucleotidiltransferase , RNA de Cadeia Dupla , Exorribonucleases/metabolismo , Humanos , Sistema Imunitário/metabolismo , Imunidade Inata , Mitocôndrias/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/genética , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Mitocondrial/metabolismo
5.
J Mol Biol ; 433(18): 167125, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34224750

RESUMO

APE1 is a multifunctional protein which plays a central role in the maintenance of nuclear and mitochondrial genomes repairing DNA lesions caused by oxidative and alkylating agents. In addition, it works as a redox signaling protein regulating gene expression by interacting with many transcriptional factors. Apart from these canonical activities, recent studies have shown that APE1 is also enzymatically active on RNA molecules. The present study unveils for the first time a new role of the mitochondrial form of APE1 protein in the metabolism of RNA in mitochondria. Our data demonstrate that APE1 is associated with mitochondrial messenger RNA and exerts endoribonuclease activity on abasic sites. Loss of APE1 results in the accumulation of damaged mitochondrial mRNA species, determining impairment in protein translation and reduced expression of mitochondrial-encoded proteins, finally leading to less efficient mitochondrial respiration. Altogether, our data demonstrate that APE1 plays an active role in the degradation of the mitochondrial mRNA and has a profound impact on mitochondrial well-being.


Assuntos
Núcleo Celular/metabolismo , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , RNA Mensageiro/metabolismo , RNA Mitocondrial/metabolismo , Núcleo Celular/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Células HeLa , Humanos , Mitocôndrias/genética , Estresse Oxidativo , RNA Mensageiro/genética , RNA Mitocondrial/genética
6.
FEBS J ; 288(2): 434-436, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32588551

RESUMO

Mitochondria are peculiar organelles because their function depends on genetic information that is present in two genomes: nuclear and mitochondrial. The expression of mitochondrially encoded information requires dedicated machinery. Many efforts have been made to identify this machinery and describe its relevant mechanisms. Recently, Bruni et al. reported a cellular model that they established to investigate the pathway for loading messenger RNAs onto ribosomes in human mitochondria. Their study revealed a role for monosome formation in the stability of mitochondrial mRNAs. Comment on: https://doi.org/10.1111/febs.15342.


Assuntos
Toxinas Bacterianas , Ribossomos Mitocondriais , Toxinas Bacterianas/metabolismo , Humanos , Mitocôndrias/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
7.
Methods Mol Biol ; 2192: 133-146, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33230771

RESUMO

RNA turnover is an essential part of the gene expression pathway, and there are several experimental approaches for its determination. High-throughput measurement of global RNA turnover rates can provide valuable information about conditions or proteins that impact gene expression. Here, we present a protocol for mitochondrial RNA turnover analysis which involves metabolic labeling of RNA coupled with quantitative high-throughput fluorescent microscopy. This approach gives an excellent opportunity to discover new factors involved in mitochondrial gene regulation when combined with loss-of-function screening strategy.


Assuntos
Regulação da Expressão Gênica , Imuno-Histoquímica/métodos , Mitocôndrias/genética , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , Bromouracila/análogos & derivados , Bromouracila/química , Expressão Gênica , Células HeLa , Humanos , Microscopia de Fluorescência/métodos , Estabilidade de RNA , RNA Mitocondrial/química , RNA Interferente Pequeno/genética , Coloração e Rotulagem/métodos , Transcrição Gênica , Transfecção , Uridina/análogos & derivados , Uridina/química
8.
Nucleic Acids Res ; 48(10): 5572-5590, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32365187

RESUMO

RNA decay is a key element of mitochondrial RNA metabolism. To date, the only well-documented machinery that plays a role in mtRNA decay in humans is the complex of polynucleotide phosphorylase (PNPase) and SUV3 helicase, forming the degradosome. REXO2, a homolog of prokaryotic oligoribonucleases present in humans both in mitochondria and the cytoplasm, was earlier shown to be crucial for maintaining mitochondrial homeostasis, but its function in mitochondria has not been fully elucidated. In the present study, we created a cellular model that enables the clear dissection of mitochondrial and non-mitochondrial functions of human REXO2. We identified a novel mitochondrial short RNA, referred to as ncH2, that massively accumulated upon REXO2 silencing. ncH2 degradation occurred independently of the mitochondrial degradosome, strongly supporting the hypothesis that ncH2 is a primary substrate of REXO2. We also investigated the global impact of REXO2 depletion on mtRNA, revealing the importance of the protein for maintaining low steady-state levels of mitochondrial antisense transcripts and double-stranded RNA. Our detailed biochemical and structural studies provide evidence of sequence specificity of the REXO2 oligoribonuclease. We postulate that REXO2 plays dual roles in human mitochondria, 'scavenging' nanoRNAs that are produced by the degradosome and clearing short RNAs that are generated by RNA processing.


Assuntos
Proteínas 14-3-3/metabolismo , Biomarcadores Tumorais/metabolismo , Exorribonucleases/metabolismo , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA de Cadeia Dupla/metabolismo , RNA Mitocondrial/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/fisiologia , Biomarcadores Tumorais/química , Biomarcadores Tumorais/fisiologia , Exorribonucleases/química , Exorribonucleases/fisiologia , Células HeLa , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Multimerização Proteica , Especificidade por Substrato
9.
Nucleic Acids Res ; 47(14): 7502-7517, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31226201

RESUMO

Maintenance of mitochondrial gene expression is crucial for cellular homeostasis. Stress conditions may lead to a temporary reduction of mitochondrial genome copy number, raising the risk of insufficient expression of mitochondrial encoded genes. Little is known how compensatory mechanisms operate to maintain proper mitochondrial transcripts levels upon disturbed transcription and which proteins are involved in them. Here we performed a quantitative proteomic screen to search for proteins that sustain expression of mtDNA under stress conditions. Analysis of stress-induced changes of the human mitochondrial proteome led to the identification of several proteins with poorly defined functions among which we focused on C6orf203, which we named MTRES1 (Mitochondrial Transcription Rescue Factor 1). We found that the level of MTRES1 is elevated in cells under stress and we show that this upregulation of MTRES1 prevents mitochondrial transcript loss under perturbed mitochondrial gene expression. This protective effect depends on the RNA binding activity of MTRES1. Functional analysis revealed that MTRES1 associates with mitochondrial RNA polymerase POLRMT and acts by increasing mitochondrial transcription, without changing the stability of mitochondrial RNAs. We propose that MTRES1 is an example of a protein that protects the cell from mitochondrial RNA loss during stress.


Assuntos
Perfilação da Expressão Gênica , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteômica/métodos , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica/genética , Sequência de Aminoácidos , Genes Mitocondriais/genética , Células HEK293 , Células HeLa , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteoma/genética , Proteoma/metabolismo , RNA Mitocondrial/genética , Proteínas de Ligação a RNA/genética , Homologia de Sequência de Aminoácidos , Estresse Fisiológico
10.
Mol Cell Oncol ; 5(6): e1516452, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30525095

RESUMO

Transcription of the human mitochondrial genome produces a vast amount of non-coding antisense RNAs. These RNA species can form G-quadraplexes (G4), which affect their decay. We found that the mitochondrial degradosome, a complex of RNA helicase SUPV3L1 (best known as SUV3) and the ribonuclease PNPT1 (also known as PNPase), together with G4-melting protein GRSF1, is a key player in restricting antisense mtRNAs.

11.
Nature ; 560(7717): 238-242, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30046113

RESUMO

Mitochondria are descendants of endosymbiotic bacteria and retain essential prokaryotic features such as a compact circular genome. Consequently, in mammals, mitochondrial DNA is subjected to bidirectional transcription that generates overlapping transcripts, which are capable of forming long double-stranded RNA structures1,2. However, to our knowledge, mitochondrial double-stranded RNA has not been previously characterized in vivo. Here we describe the presence of a highly unstable native mitochondrial double-stranded RNA species at single-cell level and identify key roles for the degradosome components mitochondrial RNA helicase SUV3 and polynucleotide phosphorylase PNPase in restricting the levels of mitochondrial double-stranded RNA. Loss of either enzyme results in massive accumulation of mitochondrial double-stranded RNA that escapes into the cytoplasm in a PNPase-dependent manner. This process engages an MDA5-driven antiviral signalling pathway that triggers a type I interferon response. Consistent with these data, patients carrying hypomorphic mutations in the gene PNPT1, which encodes PNPase, display mitochondrial double-stranded RNA accumulation coupled with upregulation of interferon-stimulated genes and other markers of immune activation. The localization of PNPase to the mitochondrial inter-membrane space and matrix suggests that it has a dual role in preventing the formation and release of mitochondrial double-stranded RNA into the cytoplasm. This in turn prevents the activation of potent innate immune defence mechanisms that have evolved to protect vertebrates against microbial and viral attack.


Assuntos
Herpesvirus Humano 1/imunologia , RNA de Cadeia Dupla/imunologia , RNA Mitocondrial/imunologia , Animais , RNA Helicases DEAD-box/deficiência , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Endorribonucleases/metabolismo , Exorribonucleases/deficiência , Exorribonucleases/genética , Exorribonucleases/metabolismo , Regulação da Expressão Gênica/imunologia , Células HeLa , Herpesvirus Humano 1/genética , Humanos , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/imunologia , Helicase IFIH1 Induzida por Interferon/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multienzimáticos/metabolismo , Mutação , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA Helicases/metabolismo , Análise de Célula Única , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
12.
Nat Commun ; 9(1): 2558, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29967381

RESUMO

The GC skew in vertebrate mitochondrial genomes results in synthesis of RNAs that are prone to form G-quadruplexes (G4s). Such RNAs, although mostly non-coding, are transcribed at high rates and are degraded by an unknown mechanism. Here we describe a dedicated mechanism of degradation of G4-containing RNAs, which is based on cooperation between mitochondrial degradosome and quasi-RNA recognition motif (qRRM) protein GRSF1. This cooperation prevents accumulation of G4-containing transcripts in human mitochondria. In vitro reconstitution experiments show that GRSF1 promotes G4 melting that facilitates degradosome-mediated decay. Among degradosome and GRSF1 regulated transcripts we identified one that undergoes post-transcriptional modification. We show that GRSF1 proteins form a distinct qRRM group found only in vertebrates. The appearance of GRSF1 coincided with changes in the mitochondrial genome, which allows the emergence of G4-containing RNAs. We propose that GRSF1 appearance is an evolutionary adaptation enabling control of G4 RNA.


Assuntos
Quadruplex G , Genoma Mitocondrial/genética , Mitocôndrias/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , RNA não Traduzido/metabolismo , Animais , RNA Helicases DEAD-box/metabolismo , Endorribonucleases/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Células HEK293 , Células HeLa , Humanos , Mitocôndrias/genética , Complexos Multienzimáticos/metabolismo , Filogenia , Proteínas de Ligação a Poli(A)/genética , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA Helicases/metabolismo , RNA Interferente Pequeno/metabolismo , RNA não Traduzido/genética
13.
PLoS One ; 13(3): e0194887, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29590189

RESUMO

Deciphering a function of a given protein requires investigating various biological aspects. Usually, the protein of interest is expressed with a fusion tag that aids or allows subsequent analyses. Additionally, downregulation or inactivation of the studied gene enables functional studies. Development of the CRISPR/Cas9 methodology opened many possibilities but in many cases it is restricted to non-essential genes. Recombinase-dependent gene integration methods, like the Flp-In system, are very good alternatives. The system is widely used in different research areas, which calls for the existence of compatible vectors and efficient protocols that ensure straightforward DNA cloning and generation of stable cell lines. We have created and validated a robust series of 52 vectors for streamlined generation of stable mammalian cell lines using the FLP recombinase-based methodology. Using the sequence-independent DNA cloning method all constructs for a given coding-sequence can be made with just three universal PCR primers. Our collection allows tetracycline-inducible expression of proteins with various tags suitable for protein localization, FRET, bimolecular fluorescence complementation (BiFC), protein dynamics studies (FRAP), co-immunoprecipitation, the RNA tethering assay and cell sorting. Some of the vectors contain a bidirectional promoter for concomitant expression of miRNA and mRNA, so that a gene can be silenced and its product replaced by a mutated miRNA-insensitive version. Our toolkit and protocols have allowed us to create more than 500 constructs with ease. We demonstrate the efficacy of our vectors by creating stable cell lines with various tagged proteins (numatrin, fibrillarin, coilin, centrin, THOC5, PCNA). We have analysed transgene expression over time to provide a guideline for future experiments and compared the effectiveness of commonly used inducers for tetracycline-responsive promoters. As proof of concept we examined the role of the exoribonuclease XRN2 in transcription termination by RNAseq.


Assuntos
DNA Nucleotidiltransferases/metabolismo , Regulação da Expressão Gênica , Vetores Genéticos , Proteínas/metabolismo , Recombinação Genética , Terminação da Transcrição Genética , Clonagem Molecular , DNA Nucleotidiltransferases/genética , Exorribonucleases/genética , Exorribonucleases/metabolismo , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Nucleofosmina , Regiões Promotoras Genéticas , Proteínas/genética
14.
Genome Res ; 25(11): 1622-33, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26294688

RESUMO

Human DIS3, the nuclear catalytic subunit of the exosome complex, contains exonucleolytic and endonucleolytic active domains. To identify DIS3 targets genome-wide, we combined comprehensive transcriptomic analyses of engineered HEK293 cells that expressed mutant DIS3, with Photoactivatable Ribonucleoside-Enhanced Cross-Linking and Immunoprecipitation (PAR-CLIP) experiments. In cells expressing DIS3 with both catalytic sites mutated, RNAs originating from unannotated genomic regions increased ∼2.5-fold, covering ∼70% of the genome and allowing for thousands of novel transcripts to be discovered. Previously described pervasive transcription products, such as Promoter Upstream Transcripts (PROMPTs), accumulated robustly upon DIS3 dysfunction, representing a significant fraction of PAR-CLIP reads. We have also detected relatively long putative premature RNA polymerase II termination products of protein-coding genes whose levels in DIS3 mutant cells can exceed the mature mRNAs, indicating that production of such truncated RNA is a common phenomenon. In addition, we found DIS3 to be involved in controlling the formation of paraspeckles, nuclear bodies that are organized around NEAT1 lncRNA, whose short form was overexpressed in cells with mutated DIS3. Moreover, the DIS3 mutations resulted in misregulation of expression of ∼50% of transcribed protein-coding genes, probably as a secondary effect of accumulation of various noncoding RNA species. Finally, cells expressing mutant DIS3 accumulated snoRNA precursors, which correlated with a strong PAR-CLIP signal, indicating that DIS3 is the main snoRNA-processing enzyme. EXOSC10 (RRP6) instead controls the levels of the mature snoRNAs. Overall, we show that DIS3 has a major nucleoplasmic function in shaping the human RNA polymerase II transcriptome.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/genética , RNA Polimerase II/metabolismo , Transcrição Gênica , Transcriptoma , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , RNA Polimerase II/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
15.
Methods Mol Biol ; 1125: 277-86, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24590796

RESUMO

Determination of RNA stability is one of the basic issues addressed in studies of RNA metabolism. In a standard approach used for RNA half-life measurement synthesis of RNA is inhibited and then the steady-state level of RNA is quantified and used for calculations. Here, we present an optimized protocol for mitochondrial RNA stability studies without perturbation of transcription and present results produced for the mitochondrial CytB messenger RNA. This method was originally described for nuclear transcripts and involves metabolic labeling of RNA with 4-thiouridine.


Assuntos
RNA/química , Tiouridina/química , Estabilidade de RNA , RNA Mitocondrial
16.
Biochim Biophys Acta ; 1829(8): 842-53, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23454114

RESUMO

Mitochondria are semiautonomous organelles which contain their own genome. Both maintenance and expression of mitochondrial DNA require activity of RNA and DNA helicases. In Saccharomyces cerevisiae the nuclear genome encodes four DExH/D superfamily members (MSS116, SUV3, MRH4, IRC3) that act as helicases and/or RNA chaperones. Their activity is necessary for mitochondrial RNA splicing, degradation, translation and genome maintenance. In humans the ortholog of SUV3 (hSUV3, SUPV3L1) so far is the best described mitochondrial RNA helicase. The enzyme, together with the matrix-localized pool of PNPase (PNPT1), forms an RNA-degrading complex called the mitochondrial degradosome, which localizes to distinct structures (D-foci). Global regulation of mitochondrially encoded genes can be achieved by changing mitochondrial DNA copy number. This way the proteins involved in its replication, like the Twinkle helicase (c10orf2), can indirectly regulate gene expression. Here, we describe yeast and human mitochondrial helicases that are directly involved in mitochondrial RNA metabolism, and present other helicases that participate in mitochondrial DNA replication and maintenance. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.


Assuntos
Mitocôndrias/enzimologia , Mitocôndrias/genética , RNA Helicases/genética , RNA Helicases/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Mitocôndrias/metabolismo , RNA/genética , RNA/metabolismo , Splicing de RNA , RNA Mitocondrial , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Nucleic Acids Res ; 41(5): 3144-61, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23358826

RESUMO

Although the human mitochondrial genome has been investigated for several decades, the proteins responsible for its replication and expression, especially nucleolytic enzymes, are poorly described. Here, we characterized a novel putative PD-(D/E)XK nuclease encoded by the human C20orf72 gene named Ddk1 for its predicted catalytic residues. We show that Ddk1 is a mitochondrially localized metal-dependent DNase lacking detectable ribonuclease activity. Ddk1 degrades DNA mainly in a 3'-5' direction with a strong preference for single-stranded DNA. Interestingly, Ddk1 requires free ends for its activity and does not degrade circular substrates. In addition, when a chimeric RNA-DNA substrate is provided, Ddk1 can slide over the RNA fragment and digest DNA endonucleolytically. Although the levels of the mitochondrial DNA are unchanged on RNAi-mediated depletion of Ddk1, the mitochondrial single-stranded DNA molecule (7S DNA) accumulates. On the other hand, overexperssion of Ddk1 decreases the levels of 7S DNA, suggesting an important role of the protein in 7S DNA regulation. We propose a structural model of Ddk1 and discuss its similarity to other PD-(D/E)XK superfamily members.


Assuntos
DNA Mitocondrial/metabolismo , Exodesoxirribonucleases/genética , Mitocôndrias/enzimologia , Substituição de Aminoácidos , Domínio Catalítico , Clivagem do DNA , DNA de Cadeia Simples/química , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Mitocôndrias/genética , Modelos Moleculares , Anotação de Sequência Molecular , Mutagênese Sítio-Dirigida , Filogenia , Estrutura Secundária de Proteína , Transporte Proteico , RNA Interferente Pequeno/genética , Análise de Sequência de DNA
18.
Nucleic Acids Res ; 41(2): 1223-40, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23221631

RESUMO

RNA decay is usually mediated by protein complexes and can occur in specific foci such as P-bodies in the cytoplasm of eukaryotes. In human mitochondria nothing is known about the spatial organization of the RNA decay machinery, and the ribonuclease responsible for RNA degradation has not been identified. We demonstrate that silencing of human polynucleotide phosphorylase (PNPase) causes accumulation of RNA decay intermediates and increases the half-life of mitochondrial transcripts. A combination of fluorescence lifetime imaging microscopy with Förster resonance energy transfer and bimolecular fluorescence complementation (BiFC) experiments prove that PNPase and hSuv3 helicase (Suv3, hSuv3p and SUPV3L1) form the RNA-degrading complex in vivo in human mitochondria. This complex, referred to as the degradosome, is formed only in specific foci (named D-foci), which co-localize with mitochondrial RNA and nucleoids. Notably, interaction between PNPase and hSuv3 is essential for efficient mitochondrial RNA degradation. This provides indirect evidence that degradosome-dependent mitochondrial RNA decay takes place in foci.


Assuntos
RNA Helicases DEAD-box/metabolismo , Endorribonucleases/metabolismo , Mitocôndrias/enzimologia , Complexos Multienzimáticos/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA Helicases/metabolismo , Estabilidade de RNA , RNA/metabolismo , Trifosfato de Adenosina/metabolismo , Processos de Crescimento Celular , Linhagem Celular , RNA Helicases DEAD-box/análise , DNA Mitocondrial/análise , Inativação Gênica , Humanos , Proteínas Mitocondriais/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/análise , Polirribonucleotídeo Nucleotidiltransferase/genética , RNA/análise , RNA Mitocondrial
19.
Biochim Biophys Acta ; 1819(9-10): 1027-34, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22178375

RESUMO

Expression of mitochondrially encoded genes must be finely tuned according to the cell's requirements. Since yeast and human mitochondria have limited possibilities to regulate gene expression by altering the transcription initiation rate, posttranscriptional processes, including RNA degradation, are of great importance. In both organisms mitochondrial RNA degradation seems to be mostly depending on the RNA helicase Suv3. Yeast Suv3 functions in cooperation with Dss1 ribonuclease by forming a two-subunit complex called the mitochondrial degradosome. The human ortholog of Suv3 (hSuv3, hSuv3p, SUPV3L1) is also indispensable for mitochondrial RNA decay but its ribonucleolytic partner has so far escaped identification. In this review we summarize the current knowledge about RNA degradation in human and yeast mitochondria. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.


Assuntos
Regulação da Expressão Gênica , Mitocôndrias , Estabilidade de RNA/genética , RNA , Trifosfato de Adenosina/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Humanos , Mitocôndrias/genética , RNA/genética , RNA/metabolismo , RNA Mitocondrial , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Biochim Biophys Acta ; 1797(6-7): 1066-70, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20117077

RESUMO

Protein complexes responsible for RNA degradation play important role in three key aspects of RNA metabolism: they control stability of physiologically functional transcripts, remove the unnecessary RNA processing intermediates and destroy aberrantly formed RNAs. In mitochondria the post-transcriptional events seem to play a major role in regulation of gene expression, therefore RNA turnover is of particular importance. Despite many years of research, the details of this process are still a challenge. This review summarizes emerging landscape of interplay between the Suv3p helicase (SUPV3L1, Suv3), poly(A) polymerase and polynucleotide phosphorylase in controlling RNA degradation in human mitochondria.


Assuntos
Mitocôndrias/metabolismo , RNA/metabolismo , RNA Helicases DEAD-box/metabolismo , Humanos , Técnicas In Vitro , Mitocôndrias/genética , Modelos Biológicos , Poli U/metabolismo , Poliadenilação , Polinucleotídeo Adenililtransferase/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA/genética , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mitocondrial , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...