Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105684, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272231

RESUMO

Eukaryotic elongation factor 1A1 (EEF1A1) is canonically involved in protein synthesis but also has noncanonical functions in diverse cellular processes. Previously, we identified EEF1A1 as a mediator of lipotoxicity and demonstrated that chemical inhibition of EEF1A1 activity reduced mouse liver lipid accumulation. These findings suggested a link between EEF1A1 and metabolism. Therefore, we investigated its role in regulating metabolic substrate preference. EEF1A1-deficient Chinese hamster ovary (2E2) cells displayed reduced media lactate accumulation. These effects were also observed with EEF1A1 knockdown in human hepatocyte-like HepG2 cells and in WT Chinese hamster ovary and HepG2 cells treated with selective EEF1A inhibitors, didemnin B, or plitidepsin. Extracellular flux analyses revealed decreased glycolytic ATP production and increased mitochondrial-to-glycolytic ATP production ratio in 2E2 cells, suggesting a more oxidative metabolic phenotype. Correspondingly, fatty acid oxidation was increased in 2E2 cells. Both 2E2 cells and HepG2 cells treated with didemnin B exhibited increased neutral lipid content, which may be required to support elevated oxidative metabolism. RNA-seq revealed a >90-fold downregulation of a rate-limiting glycolytic enzyme, hexokinase 2, which we confirmed through immunoblotting and enzyme activity assays. Pathway enrichment analysis identified downregulations in TNFA signaling via NFKB and MYC targets. Correspondingly, nuclear abundances of RELB and MYC were reduced in 2E2 cells. Thus, EEF1A1 deficiency may perturb glycolysis by limiting NFKB- and MYC-mediated gene expression, leading to decreased hexokinase expression and activity. This is the first evidence of a role for a translation elongation factor, EEF1A1, in regulating metabolic substrate utilization in mammalian cells.


Assuntos
Hexoquinase , Fator 1 de Elongação de Peptídeos , Animais , Cricetinae , Humanos , Trifosfato de Adenosina , Linhagem Celular , Cricetulus , Hexoquinase/genética , Hexoquinase/metabolismo , Lipídeos , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/metabolismo , Glicólise , Oxirredução , Movimento Celular , Proliferação de Células , Metabolismo dos Lipídeos
2.
Int J Obes (Lond) ; 46(4): 726-738, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34897286

RESUMO

BACKGROUND: Pannexin 3 (PANX3) is a channel-forming glycoprotein that enables nutrient-induced inflammation in vitro, and genetic linkage data suggest that it regulates body mass index. Here, we characterized inflammatory and metabolic parameters in global Panx3 knockout (KO) mice in the context of forced treadmill running (FEX) and high-fat diet (HFD). METHODS: C57BL/6N (WT) and KO mice were randomized to either a FEX running protocol or no running (SED) from 24 until 30 weeks of age. Body weight was measured biweekly, and body composition was measured at 24 and 30 weeks of age. Male WT and KO mice were fed a HFD from 12 to 28 weeks of age. Metabolic organs were analyzed for a panel of inflammatory markers and PANX3 expression. RESULTS: In females there were no significant differences in body composition between genotypes, which could be due to the lack of PANX3 expression in female white adipose tissue, while male KOs fed a chow diet had lower body weight and lower fat mass at 24 and 30 weeks of age, which was reduced to the same extent as 6 weeks of FEX in WT mice. In addition, male KO mice exhibited significantly lower expression of multiple pro-inflammatory genes in white adipose tissue compared to WT mice. While on a HFD body weight differences were insignificant, multiple inflammatory genes were significantly different in quadriceps muscle and white adipose tissue resulting in a more anti-inflammatory phenotype in KO mice compared to WT. The lower fat mass in male KO mice may be due to significantly fewer adipocytes in their subcutaneous fat compared to WT mice. Mechanistically, adipose stromal cells (ASCs) cultured from KO mice grow significantly slower than WT ASCs. CONCLUSION: PANX3 is expressed in male adult mouse adipose tissue and may regulate adipocyte numbers, influencing fat accumulation and inflammation.


Assuntos
Tecido Adiposo , Obesidade , Tecido Adiposo/metabolismo , Animais , Peso Corporal/fisiologia , Dieta Hiperlipídica , Feminino , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo
3.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806754

RESUMO

Medicinal use of mushrooms has been documented since ancient times, and in the modern world, mushrooms have a longstanding history of use in Eastern medicine. Recent interest in plant-based diets in Westernized countries has brought increasing attention to the use of mushrooms and mushroom-derived compounds in the prevention and treatment of chronic diseases. Edible mushrooms are the most abundant food sources of the modified amino acid, ergothioneine. This compound has been shown to accumulate in almost all cells and tissues, but preferentially in those exposed to oxidative stress and injury. The demonstrated cytoprotectant effect of ergothioneine has led many to suggest a potential therapeutic role for this compound in chronic conditions that involve ongoing oxidative stress and inflammation, including cardiovascular and metabolic diseases. However, the in vivo effects of ergothioneine and its underlying therapeutic mechanisms in the whole organism are not as clear. Moreover, there are no well-defined, clinical prevention and intervention trials of ergothioneine in chronic disease. This review highlights the cellular and molecular mechanisms of action of ergothioneine and its potential as a Traditional, Complementary and Alternative Medicine for the promotion of cardiometabolic health and the management of the most common manifestations of cardiometabolic disease.


Assuntos
Agaricales/química , Produtos Biológicos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Ergotioneína/farmacologia , Coração/efeitos dos fármacos , Miocárdio/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Produtos Biológicos/química , Suplementos Nutricionais , Ergotioneína/química , Humanos
4.
Int J Mol Sci ; 21(23)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271781

RESUMO

Prolonged, isocaloric, time-restricted feeding (TRF) protocols can promote weight loss, improve metabolic dysregulation, and mitigate non-alcoholic fatty liver disease (NAFLD). In addition, 3-day, severe caloric restriction can improve liver metabolism and glucose homeostasis prior to significant weight loss. Thus, we hypothesized that short-term, isocaloric TRF would improve NAFLD and characteristics of metabolic syndrome in diet-induced obese male mice. After 26 weeks of ad libitum access to western diet, mice either continued feeding ad libitum or were provided with access to the same quantity of western diet for 8 h daily, over the course of two weeks. Remarkably, this short-term TRF protocol modestly decreased liver tissue inflammation in the absence of changes in body weight or epidydimal fat mass. There were no changes in hepatic lipid accumulation or other characteristics of NAFLD. We observed no changes in liver lipid metabolism-related gene expression, despite increased plasma free fatty acids and decreased plasma triglycerides in the TRF group. However, liver Grp78 and Txnip expression were decreased with TRF suggesting hepatic endoplasmic reticulum (ER) stress and activation of inflammatory pathways may have been diminished. We conclude that two-week, isocaloric TRF can potentially decrease liver inflammation, without significant weight loss or reductions in hepatic steatosis, in obese mice with NAFLD.


Assuntos
Peso Corporal , Jejum , Hepatite/etiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/complicações , Animais , Biomarcadores , Biópsia , Glicemia , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Perfilação da Expressão Gênica , Glucose/metabolismo , Hepatite/metabolismo , Hepatite/patologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/patologia , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/metabolismo
5.
Pharmacol Res ; 161: 105208, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32977024

RESUMO

Inhibition of eukaryotic elongation factor 1A1 (EEF1A1) with the marine compound didemnin B decreases lipotoxic HepG2 cell death in vitro and improves early stage non-alcoholic fatty liver disease (NAFLD) in young genetically obese mice. However, the effects of didemnin B on NAFLD in a model of long-term diet-induced obesity are not known. We investigated the effects of didemnin B on NAFLD severity and metabolic parameters in western diet-induced obese mice, and on the cell types that contribute to liver inflammation and fibrosis in vitro. Male 129S6 mice were fed either standard chow or western diet for 26 weeks, followed by intervention with didemnin B (50 µg/kg) or vehicle by intraperitoneal (i.p.) injection once every 3 days for 14 days. Didemnin B decreased liver and plasma triglycerides, improved oral glucose tolerance, and decreased NAFLD severity. Moreover, didemnin B moderately increased hepatic expression of genes involved in ER stress response (Perk, Chop), and fatty acid oxidation (Fgf21, Cpt1a). In vitro, didemnin B decreased THP-1 monocyte proliferation, disrupted THP-1 monocyte-macrophage differentiation, decreased THP-1 macrophage IL-1ß secretion, and decreased hepatic stellate cell (HSteC) proliferation and collagen secretion under both basal and lipotoxic (high fatty acid) conditions. Thus, didemnin B improves hepatic steatosis, glucose tolerance, and blood lipids in obesity, in association with moderate, possibly hormetic, upregulation of pathways involved in cell stress response and energy balance in the liver. Furthermore, it decreases the activity of the cell types implicated in liver inflammation and fibrosis in vitro. These findings highlight the therapeutic potential of partial protein synthesis inhibition in the treatment of NAFLD.


Assuntos
Depsipeptídeos/farmacologia , Dieta Ocidental , Cirrose Hepática/prevenção & controle , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Fator 1 de Elongação de Peptídeos/antagonistas & inibidores , Inibidores da Síntese de Proteínas/farmacologia , Animais , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Células Hep G2 , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Mediadores da Inflamação/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos da Linhagem 129 , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/etiologia , Obesidade/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo , Transdução de Sinais , Células THP-1 , Triglicerídeos/sangue
6.
Data Brief ; 26: 104490, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31667254

RESUMO

Low dose niacin and vitamin D can directly improve human microvascular endothelial cell angiogenic function under lipotoxic conditions Peters et al.,2019. Despite exerting similar benefits on in vitro angiogenic function, these vitamins are known to signal through independent receptors, raising the possibility that differential changes in gene expression may underlie these effects. Here we provide data collected using Affymetrix GeneChip microarrays to compare gene expression in human microvascular endothelial cells treated for 16 h with growth medium containing BSA alone, or BSA complexed with the saturated fatty acid palmitate, and supplemented with 10 µM niacin or 10 nM vitamin D (1,25-dihydroxyvitamin D3). Data sets of differential gene expression included many genes involved in cellular stress responses. Pathway analyses of genes specific to vitamin D treatment identified a robust overrepresentation of pathways related to the cell cycle and DNA replication and repair.

7.
J Nutr Biochem ; 70: 65-74, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31176988

RESUMO

Vitamin D appears to either promote or inhibit neovascularization in a disease context-dependent manner. The effects of vitamin D, alone or in combination with niacin, on endothelial cell (EC) angiogenic function and on revascularization in obese animals with peripheral ischemia are unknown. Here, we report that supplementation of high palmitate medium with vitamin D, niacin or both vitamins increased EC tube formation, which relies primarily on cell migration, and also maintained tube stability over time. Transcriptomic analyses revealed that both vitamins increased stress response and anti-inflammatory gene expression. However, vitamin D decreased cell cycle gene expression and inhibited proliferation, while niacin induced stable expression of miR-126-3p and -5p and maintained cell proliferation in high palmitate. To assess vascular regeneration, diet-induced obese mice received vitamin D, niacin or both vitamins following hind limb ischemic injury. Niacin, but not vitamin D or combined treatment, improved recovery of hind limb use. Histology of tibialis anterior sections revealed no improvements in revascularization, regeneration, inflammation or fibrosis with vitamin D or combined treatment. In summary, although both vitamin D and niacin increased angiogenic function of EC cultures in high fat, only niacin improved recovery of hind limb use following ischemic injury in obese mice. It is possible that inhibition of cell proliferation by vitamin D in high-fat conditions limits vascular regeneration and recovery from peripheral ischemia in obesity.


Assuntos
Dieta , Isquemia/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Niacina/farmacologia , Veias/patologia , Vitamina D/farmacologia , Animais , Movimento Celular , Proliferação de Células , Células Endoteliais/citologia , Perfilação da Expressão Gênica , Membro Posterior/irrigação sanguínea , Inflamação , Masculino , Síndrome Metabólica/patologia , Camundongos , Camundongos Obesos , Microcirculação , Neovascularização Patológica , Ácido Palmítico/farmacologia , Regeneração , Transcriptoma
8.
Curr Opin Lipidol ; 29(5): 417-422, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30015675

RESUMO

PURPOSE OF REVIEW: Non-alcoholic fatty liver disease (NAFLD) appears to be independently associated with the development of atherosclerosis. The biological mechanisms underlying this association are complex, and likely involve liver-resident cell types other than hepatocytes. Thus, we review recent evidence that non-parenchymal hepatic cell responses to lipid excess contribute to the pathogenesis of both NAFLD and atherosclerosis. RECENT FINDINGS: Significant independent associations between NAFLD and atherosclerosis have been identified through cross-sectional studies and meta-analyses. Mechanistic studies in cell cultures and in rodent models suggest that liver-resident macrophages, activated hepatic stellate cells (HSC) and liver sinusoidal endothelial cells (LSEC) mount lipotoxic responses under NAFLD conditions which can contribute to the progression of both NAFLD and atherosclerosis. SUMMARY: Non-parenchymal hepatic cell types exhibit some similarity in their responses to lipid excess, and in their pathogenic mechanisms, which likely contribute to the coordinated progression of NAFLD and atherosclerosis. In response to lipotoxic conditions, macrophages, Kupffer cells and HSC initiate robust inflammatory responses, whereas LSEC generate excess reactive oxygen species (ROS). The extent to which inflammatory cytokines and ROS produced by non-parenchymal cells contribute to the progression of both NAFLD and atherosclerosis warrants further investigation.


Assuntos
Aterosclerose/complicações , Aterosclerose/patologia , Progressão da Doença , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Humanos
9.
Data Brief ; 10: 385-389, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28050580

RESUMO

As nonalcoholic fatty liver disease progresses to end-stage diseases, including fibrosis, cirrhosis and hepatocellular carcinoma, fibrotic activated hepatic stellate cells and cancerous epithelial cells can become abundant, changing the cellular composition of this organ. Despite potentially residing within the same diseased tissue, direct comparisons of global gene expression between activated hepatic stellate cells and hepatocellular carcinoma cells are lacking. Here we provide data collected using Affymetrix GeneChip microarrays to identify differential gene expression in cultured primary human activated hepatic stellate cells compared to HepG2 human hepatoma cells. The dataset includes many genes involved in intermediary metabolism which were investigated in greater depth in our associated article (A.M. Hetherington, C.G. Sawyez, E. Zilberman, A.M. Stoianov, D.L. Robson, J.M. Hughes-Large, et al., 2016) [1]. Pathway analyses of known protein coding genes down-regulated or up-regulated by greater than 2.0-fold are also provided.

10.
Cell Physiol Biochem ; 39(4): 1648-62, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27626926

RESUMO

BACKGROUND/AIMS: Nonalcoholic fatty liver disease (NAFLD) progression to fibrosis, cirrhosis and hepatocellular carcinoma, alters the cellular composition of this organ. During late-stage NAFLD, fibrotic and possibly cancerous cells can proliferate and, like normal hepatocytes, are exposed to high concentrations of fatty acids from both surrounding tissue and circulating lipid sources. We hypothesized that primary human activated hepatic stellate cells and epithelial hepatoma (HepG2) cells respond differently to lipotoxic conditions, and investigated the mechanisms involved. METHODS: Primary activated hepatic stellate cells and HepG2 cells were exposed to pathophysiological concentrations of fatty acids and comparative studies of lipid metabolic and stress response pathways were performed. RESULTS: Both cell types remained proliferative during exposure to a combination of palmitate plus oleate reflective of the general saturated versus unsaturated fatty acid composition of western diets. However, exposure to either high palmitate or high oleate alone induced cytotoxicity in activated stellate cells, while only palmitate caused cytotoxicity in HepG2 cells. mRNA microarray and biochemical comparisons revealed that stellate cells stored markedly less fatty acids as neutral lipids, and had reduced capacity for beta-oxidation. Similar to previous observations in HepG2 cells, palmitate, but not oleate, induced ER stress and actin stress fiber formation in activated stellate cells. In contrast, oleate, but not palmitate, induced the inflammatory signal TXNIP, decreased cytoskeleton proteins, and decreased cell polarity preceding cell death in activated stellate cells. CONCLUSIONS: Palmitate-induced lipotoxicity was associated with ER stress pathways in both primary activated hepatic stellate cells and epithelial hepatoma cells, whereas high oleate caused lipotoxicity only in activated stellate cells, possibly through a distinct mechanism involving disruption of cytoskeleton components. This may have implications for optimal dietary fatty acid compositions during various stages of NAFLD.


Assuntos
Células Estreladas do Fígado/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Ácido Oleico/toxicidade , Ácido Palmítico/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Morte Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica , Células Hep G2 , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Oxirredução , Cultura Primária de Células , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/genética
11.
Physiol Rep ; 4(17)2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27613825

RESUMO

Eukaryotic elongation factor EEF1A1 is induced by oxidative and ER stress, and contributes to subsequent cell death in many cell types, including hepatocytes. We recently showed that blocking the protein synthesis activity of EEF1A1 with the peptide inhibitor, didemnin B, decreases saturated fatty acid overload-induced cell death in HepG2 cells. In light of this and other recent work suggesting that limiting protein synthesis may be beneficial in treating ER stress-related disease, we hypothesized that acute intervention with didemnin B would decrease hepatic ER stress and lipotoxicity in obese mice with nonalcoholic fatty liver disease (NAFLD). Hyperphagic male ob/ob mice were fed semipurified diet for 4 weeks, and during week 5 received i.p. injections of didemnin B or vehicle on days 1, 4, and 7. Interestingly, we observed that administration of this compound modestly decreased food intake without evidence of illness or distress, and thus included an additional control group matched for food consumption with didemnin B-treated animals. Treatment with didemnin B improved several characteristics of hepatic lipotoxicity to a greater extent than the effects of caloric restriction alone, including hepatic steatosis, and some hepatic markers of ER stress and inflammation (GRP78, Xbp1s, and Mcp1). Plasma lipid and lipoprotein profiles and histopathological measures of NAFLD, including lobular inflammation, and total NAFLD activity score were also improved by didemnin B. These data indicate that acute intervention with the EEF1A inhibitor, didemnin B, improves hepatic lipotoxicity in obese mice with NAFLD through mechanisms not entirely dependent on decreased food intake, suggesting a potential therapeutic strategy for this ER stress-related disease.


Assuntos
Depsipeptídeos/farmacologia , Células Hep G2/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Imunossupressores/farmacologia , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fator 1 de Elongação de Peptídeos/antagonistas & inibidores , Fator 1 de Elongação de Peptídeos/metabolismo , Animais , Morte Celular , Depsipeptídeos/administração & dosagem , Depsipeptídeos/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ácidos Graxos/metabolismo , Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Células Hep G2/metabolismo , Células Hep G2/ultraestrutura , Hepatócitos/metabolismo , Hepatócitos/ultraestrutura , Humanos , Imunossupressores/administração & dosagem , Imunossupressores/metabolismo , Injeções Intraperitoneais , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia
12.
Pharmacol Res Perspect ; 4(3): e00233, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27433343

RESUMO

Niacin can reduce vascular disease risk in individuals with metabolic syndrome, but in light of recent large randomized controlled trials outcomes, its biological actions and clinical utility remain controversial. Niacin can improve endothelial function, vascular inflammation, and vascular regeneration, independent of correcting dyslipidemia, in various lean rodent models of vascular injury. Here, we tested whether niacin could directly improve endothelial cell angiogenic function during combined exposure to excess fatty acids and hypoxia, and whether intervention with niacin during continued feeding of western diet could improve revascularization and functional recovery in obese, hyperlipidemic mice with peripheral ischemia. Treatment with niacin (10 µmol/L) increased human microvascular endothelial cell angiogenic function during exposure to high fatty acids and hypoxia (2% oxygen), as determined by tube formation on Matrigel. To assess revascularization in vivo, we used western diet-induced obese mice with unilateral hind limb femoral artery ligation and excision. Treatment for 14 days postinjury with once daily i.p. injections of a low dose of niacin (50 mg/kg) improved recovery of hind limb use, in association with enhanced revascularization and decreased inflammation of the tibialis anterior muscle. These effects were concomitant with decreased plasma triglycerides, but not increased plasma apoAI. Thus, niacin improves endothelial tube formation under lipotoxic and hypoxic conditions, and moreover, promotes revascularization and functional hind limb recovery following ischemic injury in diet-induced obese mice with hyperlipidemia. These data may have implications for niacin therapy in the treatment of peripheral ischemic vascular disease associated with metabolic syndrome.

13.
Data Brief ; 6: 899-902, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26937468

RESUMO

The systemic lipid modifying drug, niacin, can directly improve human microvascular endothelial cell angiogenic function under lipotoxic conditions, possibly through activation of niacin receptors "Niacin receptor activation improves human microvascular endothelial cell angiogenic function during lipotoxicity" (Hughes-Large et al. 2014). Here we provide accompanying data collected using Affymetrix GeneChip microarrays to identify changes in gene expression in human microvascular endothelial cells treated with 10 µM niacin. Statistical analyses of robust multi-array average (RMA) values revealed that only 16 genes exhibited greater than 1.3-fold differential expression. Of these 16, only 5 were identified protein coding genes, while 3 of the remaining 11 genes appeared to be small nuclear/nucleolar RNAs. Altered expression of EFCAB4B, NAP1L2, and OR13C8 was confirmed by real time quantitative PCR.

14.
PLoS One ; 10(6): e0131269, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26102086

RESUMO

Elongation factor 1A-1 (eEF1A-1) has non-canonical functions in regulation of the actin cytoskeleton and apoptosis. It was previously identified through a promoter-trap screen as a mediator of fatty acid-induced cell death (lipotoxicity), and was found to participate in this process downstream of ER stress. Since ER stress is implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD), we investigated the mechanism of action of eEF1A-1 in hepatocyte lipotoxicity. HepG2 cells were exposed to excess fatty acids, followed by assessments of ER stress, subcellular localization of eEF1A-1, and cell death. A specific inhibitor of eEF1A-1 elongation activity, didemnin B, was used to determine whether its function in protein synthesis is involved in lipotoxicity. Within 6 h, eEF1A-1 protein was modestly induced by high palmitate, and partially re-localized from its predominant location at the ER to polymerized actin at the cell periphery. This early induction and subcellular redistribution of eEF1A-1 coincided with the onset of ER stress, and was later followed by cell death. Didemnin B did not prevent the initiation of ER stress by high palmitate, as indicated by eIF2α phosphorylation. However, consistent with sustained inhibition of eEF1A-1-dependent elongation activity, didemnin B prevented the recovery of protein synthesis and increase in GRP78 protein that are normally associated with later phases of the response to ongoing ER stress. This resulted in decreased palmitate-induced cell death. Our data implicate eEF1A-1, and its function in protein synthesis, in hepatocyte lipotoxicity.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Palmitatos/toxicidade , Elongação Traducional da Cadeia Peptídica , Fator 1 de Elongação de Peptídeos/fisiologia , Animais , Apoptose/efeitos dos fármacos , Depsipeptídeos/farmacologia , Gorduras na Dieta/toxicidade , Sacarose Alimentar/toxicidade , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Leptina/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Modelos Animais , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transporte Proteico
15.
Atherosclerosis ; 237(2): 696-704, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25463108

RESUMO

OBJECTIVE: Niacin (nicotinic acid) as a monotherapy can reduce vascular disease risk, but its mechanism of action remains controversial, and may not be dependent on systemic lipid modifying effects. Niacin has recently been shown to improve endothelial function and vascular regeneration, independent of correcting dyslipidemia, in rodent models of vascular injury and metabolic disease. As a potential biosynthetic precursor for NAD(+), niacin could elicit these vascular benefits through NAD(+)-dependent, sirtuin (SIRT) mediated responses. Alternatively, niacin may act through its receptor, GPR109A, to promote endothelial function, though endothelial cells are not known to express this receptor. We hypothesized that niacin directly improves endothelial cell function during exposure to lipotoxic conditions and sought to determine the potential mechanism(s) involved. METHODS AND RESULTS: Angiogenic function in excess palmitate was assessed by tube formation following treatment of human microvascular endothelial cells (HMVEC) with either a relatively low concentration of niacin (10 µM), or nicotinamide mononucleotide (NMN) (1 µM), a direct NAD(+) precursor. Although both niacin and NMN improved HMVEC tube formation during palmitate overload, only NMN increased cellular NAD(+) and SIRT1 activity. We further observed that HMVEC express GRP109A. Activation of this receptor with either acifran or MK-1903 recapitulated niacin-induced improvements in HMVEC tube formation, while GPR109A siRNA diminished the effect of niacin. CONCLUSION: Niacin, at a low concentration, improves HMVEC angiogenic function under lipotoxic conditions, likely independent of NAD(+) biosynthesis and SIRT1 activation, but rather through niacin receptor activation.


Assuntos
Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Microcirculação , Niacina/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Aorta/metabolismo , Apoptose , Bovinos , Morte Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Colágeno/química , Combinação de Medicamentos , Células Endoteliais/citologia , Humanos , Imuno-Histoquímica , Laminina/química , Lipídeos/química , Síndrome Metabólica/metabolismo , NAD/química , Mononucleotídeo de Nicotinamida/química , Obesidade/metabolismo , Ligação Proteica , Proteoglicanas/química , Pirazóis/química , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Albumina Sérica/química
16.
Am J Physiol Cell Physiol ; 298(1): C66-74, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19846757

RESUMO

Polyploid endothelial cells are found in aged and atherosclerotic arteries. However, whether increased chromosome content has an impact on endothelial cell function is unknown. We show here that human aortic endothelial cells become tetraploid as they approach replicative senescence. Furthermore, accumulation of tetraploid endothelial cells was accelerated during growth in high glucose. Interestingly, induction of polyploidy was completely prevented by modest overexpression of the NAD+ regenerating enzyme, nicotinamide phosphoribosyltransferase (Nampt). To determine the impact of polyploidy on endothelial cell function, independent of replicative senescence, we induced tetraploidy using the spindle poison, nocodazole. Global gene expression analyses of tetraploid endothelial cells revealed a dysfunctional phenotype characterized by a cell cycle arrest profile (decreased CCNE2/A2, RBL1, BUB1B; increased CDKN1A) and increased expression of genes involved in inflammation (IL32, TNFRSF21/10C, PTGS1) and extracellular matrix remodeling (COL5A1, FN1, MMP10/14). The protection from polyploidy conferred by Nampt was not associated with enhanced poly(ADP-ribose) polymerase-1 or sirtuin (SIRT) 2 activity, but with increased SIRT1 activity, which reduced cellular reactive oxygen species and the associated oxidative stress stimulus for the induction of polyploidy. We conclude that human aortic endothelial cells are prone to chromosome duplication that, in and of itself, can induce characteristics of endothelial dysfunction. Moreover, the emergence of polyploid endothelial cells during replicative aging and glucose overload can be prevented by optimizing the Nampt-SIRT1 axis.


Assuntos
Citocinas/farmacologia , Endotélio Vascular/fisiologia , Nicotinamida Fosforribosiltransferase/farmacologia , Poliploidia , Envelhecimento , Aorta , Aterosclerose/genética , Aterosclerose/fisiopatologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Divisão Celular/efeitos dos fármacos , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Matriz Extracelular/genética , Regulação da Expressão Gênica , Genes Reporter , Glucose/farmacologia , Humanos , Inflamação/genética , Nocodazol/farmacologia
17.
Aging Cell ; 8(2): 100-12, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19302375

RESUMO

Endothelial dysfunction is a characteristic of aging-related vascular disease and is worsened during diabetes. High glucose can impair endothelial cell (EC) function through cellular accumulation of reactive oxygen species, an insult that can also limit replicative lifespan. Nicotinamide phosphoribosyltransferase (Nampt), also known as PBEF and visfatin, is rate-limiting for NAD+ salvage from nicotinamide and confers resistance to oxidative stress via SIRT1. We therefore sought to determine if Nampt expression could resist the detrimental effects of high glucose and confer a survival advantage to human vascular EC in this pathologic environment. Human aortic EC were infected with retrovirus encoding eGFP or eGFP-Nampt, and FACS-selected to yield populations with similar, modest transgene expression. Using a chronic glucose exposure model we tracked EC populations to senescence, assessed cellular metabolism, and determined in vitro angiogenic function. Overexpression of Nampt increased proliferation and extended replicative lifespan, and did so preferentially during glucose overload. Nampt expression delayed markers of senescence and limited reactive oxygen species accumulation in high glucose through a modest increase in aerobic glycolysis. Furthermore, tube networks formed by Nampt-overexpressing EC were more extensive and glucose-resistant, in accordance with SIRT1-mediated repression of the anti-angiogenic transcription factor, FoxO1. We conclude that Nampt enables proliferating human EC to resist the oxidative stress of aging and of high glucose, and to productively use excess glucose to support replicative longevity and angiogenic activity. Enhancing endothelial Nampt activity may thus be beneficial in scenarios requiring EC-based vascular repair and regeneration during aging and hyperglycemia, such as atherosclerosis and diabetes-related vascular disease.


Assuntos
Vasos Sanguíneos/metabolismo , Senescência Celular/genética , Citocinas/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Neovascularização Fisiológica/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Biomarcadores/análise , Biomarcadores/metabolismo , Proliferação de Células , Células Cultivadas , Citocinas/genética , Complicações do Diabetes/metabolismo , Complicações do Diabetes/fisiopatologia , Células Endoteliais/efeitos dos fármacos , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Vetores Genéticos/genética , Humanos , Nicotinamida Fosforribosiltransferase/genética , Sirtuína 1 , Sirtuínas/genética , Sirtuínas/metabolismo , Transfecção
18.
Curr Pharm Des ; 15(1): 110-7, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19149606

RESUMO

Cardiovascular disease (CVD) is the most prevalent disease worldwide and there is intense interest in pharmaceutical approaches to reduce the burden of this chronic, aging-related condition. The sirtuin (SIRT) family of NAD(+)-dependent protein deacetylases and ADP-ribosyltransferases have emerged as exciting targets for CVD management that can impact the cardiovascular system both directly and indirectly, the latter by modulating whole body metabolism. SIRT1-4 regulate the activities of a variety of transcription factors, coregulators, and enzymes that improve metabolic control in adipose tissue, liver, skeletal muscle, and pancreas, particularly during obesity and aging. SIRT1 and 7 can control myocardial development and resist stress- and aging-associated myocardial dysfunction through the deacetylation of p53 and forkhead box O1 (FoxO1). By modulating the activity of endothelial nitric oxide synthase (eNOS), FoxO1, and p53, and the expression of angiotensin II type 1 receptor (AT1R), SIRT1 also promotes vasodilatory and regenerative functions in endothelial and smooth muscle cells of the vascular wall. Given the array of potentially beneficial effects of SIRT activation on cardiovascular health, interest in developing specific SIRT agonists is well-substantiated. Because SIRT activity depends on cellular NAD+ availability, enzymes involved in NAD+ biosynthesis, including nicotinamide phosphoribosyltransferase (Nampt), may also be valuable pharmaceutical targets for managing CVD. Herein we review the actions of the SIRT proteins on the cardiovascular system and consider the potential of modulating SIRT activity and NAD+ availability to control CVD.


Assuntos
Doenças Cardiovasculares/metabolismo , NAD/metabolismo , Sirtuínas/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Miocárdio/metabolismo
19.
J Lipid Res ; 47(12): 2726-37, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16960261

RESUMO

Cell dysfunction and death induced by lipid accumulation in nonadipose tissues, or lipotoxicity, may contribute to the pathogenesis of obesity and type 2 diabetes. However, the mechanisms leading to lipotoxic cell death are poorly understood. We recently reported that, in Chinese hamster ovary (CHO) cells and in H9c2 cardiomyoblasts, lipid overload induced by incubation with 500 muM palmitate leads to intracellular accumulation of reactive oxygen species, which subsequently induce endoplasmic reticulum (ER) stress and cell death. Here, we show that palmitate also impairs ER function through a more direct mechanism. Palmitate was rapidly incorporated into saturated phospholipid and triglyceride species in microsomal membranes of CHO cells. The resulting membrane remodeling was associated with dramatic dilatation of the ER and redistribution of protein-folding chaperones to the cytosol within 5 h, indicating compromised ER membrane integrity. Increasing beta-oxidation, through the activation of AMP-activated protein kinase, decreased palmitate incorporation into microsomes, decreased the escape of chaperones to the cytosol, and decreased subsequent caspase activation and cell death. Thus, palmitate rapidly increases the saturated lipid content of the ER, leading to compromised ER morphology and integrity, suggesting that impairment of the structure and function of this organelle is involved in the cellular response to fatty acid overload.


Assuntos
Retículo Endoplasmático Rugoso/efeitos dos fármacos , Ácido Palmítico/toxicidade , Animais , Células CHO , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Cricetinae , Retículo Endoplasmático Rugoso/metabolismo , Retículo Endoplasmático Rugoso/ultraestrutura , Ativação Enzimática/efeitos dos fármacos , Microscopia Eletrônica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Mioblastos Cardíacos/efeitos dos fármacos , Mioblastos Cardíacos/metabolismo , Mioblastos Cardíacos/ultraestrutura , Oxirredução , Fosfolipídeos/metabolismo , Ratos , Triglicerídeos/metabolismo
20.
Mol Biol Cell ; 17(2): 770-8, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16319173

RESUMO

The deleterious consequences of fatty acid (FA) and neutral lipid accumulation in nonadipose tissues, such as the heart, contribute to the pathogenesis of type 2 diabetes. To elucidate mechanisms of FA-induced cell death, or lipotoxicity, we generated Chinese hamster ovary (CHO) cell mutants resistant to palmitate-induced death and isolated a clone with disruption of eukaryotic elongation factor (eEF) 1A-1. eEF1A-1 involvement in lipotoxicity was confirmed in H9c2 cardiomyoblasts, in which small interfering RNA-mediated knockdown also conferred palmitate resistance. In wild-type CHO and H9c2 cells, palmitate increased reactive oxygen species and induced endoplasmic reticulum (ER) stress, changes accompanied by increased eEF1A-1 expression. Disruption of eEF1A-1 expression rendered these cells resistant to hydrogen peroxide- and ER stress-induced death, indicating that eEF1A-1 plays a critical role in the cell death response to these stressors downstream of lipid overload. Disruption of eEF1A-1 also resulted in actin cytoskeleton defects under basal conditions and in response to palmitate, suggesting that eEF1A-1 mediates lipotoxic cell death, secondary to oxidative and ER stress, by regulating cytoskeletal changes critical for this process. Furthermore, our observations of oxidative stress, ER stress, and induction of eEF1A-1 expression in a mouse model of lipotoxic cardiomyopathy implicate this cellular response in the pathophysiology of metabolic disease.


Assuntos
Miócitos Cardíacos/metabolismo , Palmitatos/toxicidade , Fator 1 de Elongação de Peptídeos/fisiologia , Animais , Biomarcadores/metabolismo , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Morte Celular , Linhagem Celular , Cricetinae , Cricetulus , Modelos Animais de Doenças , Retículo Endoplasmático/fisiologia , Camundongos , Modelos Biológicos , Mutagênese Insercional , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo , Fator 1 de Elongação de Peptídeos/metabolismo , Interferência de RNA , Ratos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...