Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 289(37): 25764-73, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25063810

RESUMO

The dopamine transporter (DAT) belongs to the family of neurotransmitter:sodium symporters and controls dopamine (DA) homeostasis by mediating Na(+)- and Cl(-)-dependent reuptake of DA. Here we used two-electrode voltage clamp measurements in Xenopus oocytes together with targeted mutagenesis to investigate the mechanistic relationship between DAT ion binding sites and transporter conductances. In Li(+), DAT displayed a cocaine-sensitive cation leak current ∼10-fold larger than the substrate-induced current in Na(+). Mutation of Na(+) coordinating residues in the first (Na1) and second (Na2) binding sites suggested that the Li(+) leak depends on Li(+) interaction with Na2 rather than Na1. DA caused a marked inhibition of the Li(+) leak, consistent with the ability of the substrate to interact with the Li(+)-occupied state of the transporter. The leak current in Li(+) was also potently inhibited by low millimolar concentrations of Na(+), which according to our mutational data conceivably depended on high affinity binding to Na1. The Li(+) leak was further regulated by Cl(-) that most likely increases Li(+) permeation by allosterically lowering Na2 affinity. Interestingly, mutational lowering of Na2 affinity by substituting Asp-420 with asparagine dramatically increased cation permeability in Na(+) to a level higher than seen in Li(+). In addition to reveal a functional link between the bound Cl(-) and the cation bound in the Na2 site, the data support a key role of Na2 in determining cation permeability of the transporter and thereby possibly in regulating the opening probability of the inner gate.


Assuntos
Cloretos/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Sódio/metabolismo , Animais , Sítios de Ligação , Cátions/química , Cocaína/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Lítio/química , Mutagênese , Oócitos/metabolismo , Técnicas de Patch-Clamp , Permeabilidade/efeitos dos fármacos , Sódio/química , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/metabolismo
2.
J Biol Chem ; 288(28): 20195-207, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23697999

RESUMO

The dominant glutamate transporter isoform in the mammalian brain, GLT1, exists as at least three splice variants, GLT1a, GLT1b, and GLT1c. GLT1b interacts with the scaffold protein PICK1 (protein interacting with kinase C1), which is implicated in glutamatergic neurotransmission via its regulatory effect on trafficking of AMPA-type glutamate receptors. The 11 extreme C-terminal residues specific for the GLT1b variant are essential for its specific interaction with the PICK1 PDZ domain, but a functional consequence of this interaction has remained unresolved. To identify a functional effect of PICK1 on GLT1a or GLT1b separately, we employed the Xenopus laevis expression system. GLT1a and GLT1b displayed similar electrophysiological properties and EC50 for glutamate. Co-expressed PICK1 localized efficiently to the plasma membrane and resulted in a 5-fold enhancement of the leak current in GLT1b-expressing oocytes with only a minor effect on [(3)H]glutamate uptake. Three different GLT1 substrates all caused a slow TBOA-sensitive decay in the membrane current upon prolonged application, which provides support for the leak current being mediated by GLT1b itself. Leak and glutamate-evoked currents in GLT1a-expressing oocytes were unaffected by PICK1 co-expression. PKC activation down-regulated GLT1a and GLT1b activity to a similar extent, which was not affected by co-expression of PICK1. In conclusion, PICK1 may not only affect glutamatergic neurotransmission by its regulatory effect on glutamate receptors but may also affect neuronal excitability via an increased GLT1b-mediated leak current. This may be particularly relevant in pathological conditions such as amyotrophic lateral sclerosis and cerebral hypoxia, which are associated with neuronal GLT1b up-regulation.


Assuntos
Proteínas de Transporte/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Proteínas Nucleares/metabolismo , Processamento Alternativo , Animais , Western Blotting , Proteínas de Transporte/genética , Proteínas do Citoesqueleto , Transportador 2 de Aminoácido Excitatório/genética , Feminino , Ácido Glutâmico/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Microscopia de Fluorescência , Proteínas Nucleares/genética , Oócitos/metabolismo , Oócitos/fisiologia , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Quinase C/metabolismo , Ratos , Trítio , Xenopus laevis
3.
Nat Neurosci ; 14(10): 1285-92, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21874016

RESUMO

The amount of neurotransmitter stored in a single synaptic vesicle can determine the size of the postsynaptic response, but the factors that regulate vesicle filling are poorly understood. A proton electrochemical gradient (Δµ(H+)) generated by the vacuolar H(+)-ATPase drives the accumulation of classical transmitters into synaptic vesicles. The chemical component of Δµ(H+) (ΔpH) has received particular attention for its role in the vesicular transport of cationic transmitters as well as in protein sorting and degradation. Thus, considerable work has addressed the factors that promote ΔpH. However, synaptic vesicle uptake of the principal excitatory transmitter glutamate depends on the electrical component of Δµ(H+) (Δψ). We found that rat brain synaptic vesicles express monovalent cation/H(+) exchange activity that converts ΔpH into Δψ, and that this promotes synaptic vesicle filling with glutamate. Manipulating presynaptic K(+) at a glutamatergic synapse influenced quantal size, indicating that synaptic vesicle K(+)/H(+) exchange regulates glutamate release and synaptic transmission.


Assuntos
Potássio/metabolismo , Terminações Pré-Sinápticas/fisiologia , Sinapses/fisiologia , Vesículas Sinápticas/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacologia , Análise de Variância , Animais , Animais Recém-Nascidos , Proteínas de Artrópodes , Ácido Aspártico/farmacocinética , Transporte Biológico , Fenômenos Biofísicos/efeitos dos fármacos , Encéfalo/citologia , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Cátions/metabolismo , Relação Dose-Resposta a Droga , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Gluconatos/farmacologia , Ácido Glutâmico/farmacocinética , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Ionóforos/farmacologia , Potencial da Membrana Mitocondrial , Monensin/farmacologia , Oligopeptídeos/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Cintilografia , Ratos , Ratos Wistar , Isótopos de Sódio/farmacocinética , Sinapses/diagnóstico por imagem , Sinapses/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos , Sinaptossomos/ultraestrutura , Trítio/farmacocinética
4.
J Biol Chem ; 279(4): 2513-9, 2004 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-14594797

RESUMO

The substrate-binding sites in membrane transporters are alternately accessible from either side of the membrane, but the molecular basis of how this alternate opening of internal and external gates is achieved is largely unknown. Here we present data indicating that, in the neuronal electrogenic sodium- and potassium-coupled glutamate transporter EAAC-1, the substrate-binding site and one of the gates, or a residue controlling the gating process, are in close physical proximity. Arginine 445, located only two residues away from a residue implicated in glutamate binding (Bendahan, A., Armon, A., Madani, N., Kavanaugh, M. P., and Kanner, B. I. (2000) J. Biol. Chem. 275, 37436-37442), has been mutated to serine (R445S). Upon expression in oocytes, measurements of l-[(3)H]-glutamate transport under voltage clamp reveal that the charge/flux ratio for l-glutamate at -60 mV is approximately 30-fold higher than that of the wild type. Also, with d-aspartate, R445S exhibits an approximately 15-fold increase in this ratio. In contrast to the wild type, the reversal potential of the substrate-dependent currents in R445S shifts to more negative potentials when either the external sodium or potassium concentration is decreased. These findings indicate that these two cations are the main current carriers in the R445S mutant. Introduction of a methionine or a glutamine, but not a lysine, at position 445 gives rise to a phenotype similar to R445S. Therefore, it seems that the elimination of a positive charge in the vicinity of the substrate-binding site converts the transporter into a glutamate-gated cation-conducting pathway.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/química , Ácido Glutâmico/metabolismo , Simportadores/química , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Arginina , Sítios de Ligação , Cátions , Proteínas de Transporte de Glutamato da Membrana Plasmática , Mutação , Coelhos , Especificidade por Substrato , Simportadores/genética , Simportadores/metabolismo
5.
J Biol Chem ; 277(16): 13501-7, 2002 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-11823462

RESUMO

In the brain, the neurotransmitter glutamate is removed from the synaptic cleft by (Na(+) + K(+))-coupled transporters by an electrogenic process. Moreover, these transporters mediate a sodium- and glutamate-dependent uncoupled chloride conductance. In contrast to the wild type, the uptake of radiolabeled substrate by the I421C mutant is inhibited by the membrane-impermeant [2-(trimethylammonium)ethyl]methanethiosulfonate and also by other sulfhydryl reagents. In the wild-type and the unmodified mutant, substrate-induced currents are inwardly rectifying and reflect the sum of the coupled electrogenic flux and the anion conductance. Remarkably, the I421C mutant modified by sulfhydryl reagents exhibits currents that are non-rectifying and reverse at the equilibrium potential for chloride. Strikingly, almost 10-fold higher concentrations of d-aspartate are required to activate the currents in the modified mutant as compared with untreated I421C. Under conditions in which only the coupled currents are observed, the modified mutant does not exhibit any currents. However, when the uncoupled current is dominant, sulfhydryl reagents cause >4-fold stimulation of this current. Thus, the modification of the cysteine introduced at position 421 impacts the coupled but not the uncoupled fluxes. Although both fluxes are activated by substrate, they behave as independent processes that are in dynamic equilibrium.


Assuntos
Sistema X-AG de Transporte de Aminoácidos , Proteínas de Transporte/metabolismo , Neurônios/metabolismo , Simportadores , Animais , Proteínas de Transporte/genética , Cloro/metabolismo , Cisteína/química , Relação Dose-Resposta a Droga , Eletrofisiologia , Proteínas de Transporte de Glutamato da Membrana Plasmática , Células HeLa , Humanos , Modelos Químicos , Mutação , Conformação Proteica , RNA Complementar/metabolismo , Coelhos , Transcrição Gênica , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...